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Summary

In the Sydney University Stellar Interferometer (SUSI), fringes are detected when

the optical path-difference between the arriving wavefronts is less than the coherence

length for the observation. While observing a star, it is necessary to compensate not

only for the changes in pathlength due to the earth’s rotation, but also for those due to

the effects of atmospheric turbulence. Apertures smaller than r0 are used and active

tilt-compensation is employed so that the wavefronts in the combined beams are made

parallel. The remaining path-difference between the wavefronts must then be tracked

for an accurate calibration of the fringe visibility. Improved tracking allows larger

bandwidths to be used and therefore improves the sensitivity of the instrument.

In this thesis a fringe tracking system is developed for SUSI based on group

delay tracking with a PAPA detector. The method uses short exposure images of

fringes detected in the dispersed spectra of the combined starlight. The number

of fringes across a fixed bandwidth is directly proportional to the path-difference

between the arriving wavefronts, and a Fast Fourier Transform is used to calculate

the spatial power spectrum of the fringes, thereby locating the delay. Several topics

are developed in the thesis. The visibility loss due to a non-constant fringe spacing

on the detector is investigated, and the improvements obtained from rebinning the

photon data are shown. The low light level limitations of group delay tracking are

determined, with emphasis on the probability of tracking error, rather than on signal-

to-noise performance. Experimental results from both laboratory studies and stellar

observations are presented. These show the first closed-loop operation of a fringe

tracking system based on observations of group delay with a stellar interferometer.

A new photon counting PAPA detector is also described, which was developed

for use in this work. The design principles of the PAPA camera are outlined, and

the potential sources of image artifacts are identified. These artifacts arise from the

use of optical encoding with Gray coded masks. The new camera is distinguished by

its mask-plate, which was designed to overcome artifacts due to vignetting. New lens

mounts are also presented which permit a simplified optical alignment without the

need for tilt-plates. The performance of the camera is described and its images are

shown to be free of the effects of vignetting.
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Chapter 1

Modern Michelson Stellar

Interferometry

The techniques of optical interferometry will profoundly change our understanding of

astronomy. High angular resolution stellar interferometry provides the only means

of determining many of the fundamental properties of stars (Davis, 1985a). This in-

cludes stellar radii, surface fluxes, effective temperatures, and thus luminosities; the

modelling of stellar atmospheres, stellar rotation, limb darkening, binary star separa-

tions, and the direct calibration of the Cepheid period-luminosity relationship. The

scientific progress in this field until the 1980’s has been described in a comprehensive

survey by McAlister (1985). He states that if long-baseline optical interferometers

reach their expected sensitivities, they will trigger a revolution in how astronomers

view the Universe.

This thesis describes the development of a fringe tracking system for the Sydney

University Stellar Interferometer. As will be shown, fringe tracking is an essential

component of modern long-baseline stellar interferometry. Also described here is the

design of a new photon counting PAPA camera, which was developed and tested for use

with the fringe tracking system. In this chapter the principles of stellar interferometry

are reviewed, the motivation for the work is described, and the structure of the thesis

is outlined.

1.1 Stellar Interferometry

The methods of astronomical interferometry have been reviewed by several authors

(Justice et al., 1985; Thompson et al., 1986; Clark 1989). Although these reviews are

primarily intended to describe radio interferometry, the principles that they discuss are

equally valid in the optical regime. This is true of the van Cittert—Zernike theorem

which relates the measured data to the structure of the source. The assumptions of

3
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the theorem will be reviewed to illustrate the role of path compensation in a modern

Michelson interferometer.

1.1.1 Van Cittert—Zernike theorem

A typical stellar interferometer uses a pair of collecting apertures that are located

at fixed positions on the surface of the earth, denoted here by the vectors p1 and

p2. Behind the apertures are mirrors which redirected the light to a laboratory,

travelling an additional distance s1 from p1, and s2 from p2, until it is combined

to form interference fringes. Measurements are made of the contrast of the fringes,

and perhaps also an estimate of the fringe phase. This is averaged over a time during

which the fringes appear stable and is then recorded. The van Cittert–Zernike theorem

relates the fringe measurements to the structure of the source.

The theorem treats only quasi-monochromatic waves, and makes several as-

sumptions about the source and the propagating medium (Clark, 1989). It is assumed

that the source is a long way away, has no depth, and lies on the celestial sphere—

a sphere with an almost infinite radius which is centered on the observer. Within

that sphere there are no other sources of electromagnetic radiation: the fields prop-

agate through empty space from the surface of the sphere. The radiation is treated

as a scalar field and it is assumed that the source is not spatially coherent, so light

vibrations from its different regions are statistically independent.

The measurements are confined to a specific plane that radio astronomers call

the u-v plane. The variables u and v are two coordinates of the projected aperture

separation. If the unit vector k̂ points from the interferometer to the source, and the

unit vectors ı̂ and ̂ lie in a plane tangential to the celestial sphere at the source, then

we can write

u =
ı̂ · (p2 − p1)

λ
, and v =

̂ · (p2 − p1)

λ
,

with

τ =
k̂ · (p2 − p1)

c
.

Here the propagation time τ replaces the variable w that is normally used in radio

astronomy to describe the third coordinate of the projected aperture separation. The

u-v plane is located where τ = 0.

Coordinates within the source may be described by the direction cosines l and

m, as measured with respect to the vector k̂ from the interferometer. The brightness

distribution of the source is then described by the function I(l,m). The theorem can



1.1. STELLAR INTERFEROMETRY 5

be written as follows:

γ12(0) =

e−i2πw
∫ ∫

κ

I(l,m)e−i2π[ul+vm] dl dm

∫ ∫

κ

I(l,m) dl dm
, (1.1)

where γ12(0) is the complex degree of coherence of the source describing the fringe

visibility and phase. This is in the form of a normalised two-dimensional Fourier trans-

form. The brightness distribution I(l,m) is related to measurements of the fringes

at different values of u and v determined by the aperture separations, or baselines.

Therefore if the fringes are observed at different locations in the u-v plane it is possible

to reconstruct the source through an inverse transform.

1.1.2 Path compensation and fringe tracking

In general τ would be non-zero, because the points p1 and p2 are fixed to the ground

and rotate with the earth. However, the pathlengths can be compensated by adjusting

s1 and s2 within the interferometer. We can redefine τ so that

τ =
k̂ · (p2 − p1)

c
+

(s2 − s1)
c

, (1.2)

and choose s1 and s2 so that τ = 0. The path-difference s2−s1 must then be constantly

changing to track the vector k̂ that follows the source across the sky. The standard

approach in optical interferometry is to track the delay using a moving optical element,

and to monitor its motions with laser metrology.

However, pathlength compensation is further complicated by the effects of the

turbulent atmosphere. The wavefronts of starlight are distorted by changes in the

index of refraction of dry air, and path fluctuations are induced that can be many

wavelengths long. Moreover, the changes evolve on timescales of milliseconds or tens

of milliseconds. Thompson et al. (1986) point out that in optical interferometry it is

therefore more difficult to obtain an accurate phase calibration, and in many cases

only the visibility amplitude is measured. The severity of the wavefront distortions is

often quoted in terms of Fried’s coherence length, r0, which is the separation of two

points for which the rms phase difference is 2.6 radians. At radio wavelengths r0 is

many kilometers wide, but in the optical it can be smaller than 10 cm.

With large optical telescopes it is common for the wave distortions to be smaller

than the aperture size. When the apertures are greater than r0 there are numerous

wavefront tilts in the aperture, and these can each give rise to separate images in the

focal plane. An image of a star is not diffraction limited, but is distorted and broken

into many fragments. These appear as speckles, similar to the speckles observed in

diffuse laser light (Labeyrie, 1970; Dainty, 1984), and as the phase structure evolves
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with time the speckles appear to boil and change shape. Examples of this are shown in

the review by Labeyrie (1978). If the light from pairs of large apertures is coherently

combined then it would be difficult to calibrate for the effects of atmospheric phase.

It is for this reason that modern Michelson stellar interferometers use small

r0 sized apertures and active control of wavefront tilt. The small apertures ensure

that the wavefronts passing into the instrument are essentially flat, even though they

may be tilted with respect to each other. The light through each aperture forms a

diffraction limited image of the star, and the tilts can be stabilised by monitoring the

image motion. This information is used to control piezo mirrors which are servoed so

that the beams are combined with zero tilt and shear. If the combined light was then

focused to an image plane then the two stellar images would appear to be stationary

and perfectly superimposed. However, the differential path fluctuations would still

exist.

Residual path-differences can seriously affect the measured visibility. The band-

width that is used for an observation determines the largest path-difference over which

fringes will be visible, also termed the coherence length. The visibility of the fringes

drops at increasing values of τ , and falls to zero when the path difference is equal

to the coherence length. The atmosphere is capable of inducing rapid pathlength

changes, and can therefore cause the fringe visibility to change over short timescales.

Fringe tracking and path compensation are important aspects of stellar inter-

ferometry. If the path errors cannot be corrected then the only way to reduce the

visibility losses is to narrow the bandwidth and thereby increase the coherence length.

However, large bandwidths are clearly more desirable; they permit more light to be

used in the measurement and thus improve the sensitivity to faint objects.

1.2 The Sydney University Stellar Interferometer

SUSI is a modern Michelson stellar interferometer, located at the site of the Australia

Telescope near Narrabri, New South Wales. It is designed to measure the angular

diameters of stars to an accuracy of ±2% with a limiting magnitude of +7.5 and a

resolution of 7.5 · 10−5 arc seconds (Davis, 1985b; Davis et al. 1992).

The layout of the interferometer is shown in Fig. 1.1. It has 12 siderostats on

a north-south baseline with possible aperture separations in a geometrical progression

from 5 to 640 m. Small apertures and active wavefront tilt correction are used to

minimise the coherence loss caused by atmospheric turbulence. Light is steered into

the main building via relay mirrors which guide it through an evacuated pipe. On en-

tering the building the light leaves the pipe and emerges into a temperature controlled

enclosure. There it passes through a beam reducing telescope, which compresses the

beam diameter by a factor of three, and then along an optical pathlength compensator
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Figure 1.1: The layout of the Sydney University Stellar Interferometer. Light
arrives at the north and south siderostats and is redirected into the main building.
It passes through the Beam Reducing Telescope, compressing the beam diameter
to about 4 cm, and then is sent back and forth along the Optical Path Length
Compensator before arriving at the beam-combining table. During this process
the effects of longitudinal dispersion, atmospheric refraction, and atmospheric
tilt, are compensated. (Drawing courtesy of Theo ten Brummelaar.)
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which moves so that the coherence envelope of the starlight remains stationary, despite

the changing altitude and azimuth of the star. The light is brought to the main optical

table, combined, and then dispersed by a prism spectrometer. Photomultiplier tubes

are used to count photons within a bandwidth of ∼1 nm, and the fringe visibility is

measured using the counts in each of the two combined beams, as described by Tango

and Twiss (1980).

For this to be successful, all components of the interferometer must be free of

vibration. This is true not only for the siderostats, which have foundations that extend

several meters into bedrock, but also for the path compensating carriage, which must

move during the course of an observation.

1.3 The Optical Pathlength Compensator

The optical pathlength compensator has been outlined previously by Booth et al.

(1992), but will be reviewed here briefly. It has been designed for two carriages

mounted on rails on a 70 m long reinforced concrete pier: a coarse carriage that

remains stationary during an observation, and a fine carriage that is microstepped

under servo control. The path compensation is done in air in a temperature controlled

environment with provision for the correction of longitudinal dispersion.

There are two identical laser metrology systems which independently monitor

the position of each side of the fine compensation carriage, one system at the northern

and southern end of the path compensator. HeNe lasers are used with an operating

wavelength of 1.15 µm, and a collimated beam diameter of 30 mm. Although the

beams from the metrology lasers travel the same pathlengths as the starlight, they

are separated from it both spatially and in wavelength. The metrology system is able

to track movement errors to an accuracy of 18 nm in optical path difference.

Large scale path compensation is done differentially: the fine carriage contains

two catseye reflectors which are pointed in opposite directions along the rails. When

the fine carriage is displaced by a distance xf it will remove a pathlength 2xf from

one arm whilst adding it to the other, producing a total pathlength change of 4xf .

The total range of adjustment for the fine carriage is therefore 280 m (4 x 70 m), or

±140 m. The smallest pathlength adjustments are done with piezo electric mirrors

mounted on the carriage itself. At the focus of each catseye there is a piezo controlled

mirror, one with a throw of 30 µm and the other with a throw of 15 µm. Each piezo

acts in only one arm of the interferometer and produces a path adjustment of only

twice its displacement, 2xp1 and 2xp2. The expression for the total path adjustment

is therefore

4(xf − x0)− 2(xp1 − xp2), (1.3)

where x0 is the white-light fringe position of the carriage for autocollimation from the
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siderostats. This expression indicates that a positive motion of a piezo shortens the

pathlength in that arm and that if they both move by equal amounts the net effect is

zero pathlength change.

1.4 Motivation for this Work

In its design SUSI was intended to operate using fringe tracking so that larger band-

widths could be used. The 11.4 m prototype interferometer, upon which the instru-

ment was based, had not used fringe tracking, but instead relied on measurements of

the coherence envelope of the fringes (Davis & Tango, 1986). As will be discussed in

Chapt. 2, this method is time consuming and inefficient, but nevertheless useful for

observations of bright stars at short baselines. For observations of faint objects at

long baselines, fringe tracking was deemed to be essential, and was therefore included

in the design.

Phase tracking, however, was not considered to be important. The proposed

scientific program was primarily concerned with the measurement of the angular di-

ameters of stars and the separation of binary stars, which are all objects that possess

a simple symmetry and can be described by visibility amplitudes alone—without the

knowledge of visibility phase. Phase tracking was therefore not required.

Group Delay Tracking

Group delay tracking was suggested as a suitable alternative. The theoretical and

experimental work in this subject form the bulk of this thesis. By this technique the

starlight is brought to the beam combiner, dispersed through a spectrometer, and

imaged onto a photon counting array detector. Whenever the path-difference between

the two beams is greater than zero there will be fringes visible in the spectrum, with the

number of fringes directly proportional to the path difference. Thus by determining a

fringe frequency it is possible to measure the path-difference in real-time and correct

for errors induced by atmospheric turbulence. Tango and Twiss (1980) make reference

to this, calling it a form of AFT (automatic fringe tracking) and attributing the idea

to W.H. Steel.

Photon counting array detectors

At SUSI it had also been envisaged that photon counting array detectors would even-

tually replace the photomultipliers that are presently used. Measurements of visibility

could then be done at many different wavelengths simultaneously. The wavelengths

of observation would be determined by the location of the pixels in the array, and the
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bandwidths would be set by the pixel size or the width of pixel groupings.

Furthermore, the same information could be used for group delay tracking.

The development of an array detector was therefore considered an important aspect

of the design of the fringe tracking system, and arrangements were made with Harvard

University for the purchase of a PAPA camera. Although unforeseen at the time, the

detector proved to have defects which made it unsuited for observational work. The

redesign and construction of a new PAPA camera became a major component of this

research.

1.5 Outline of the Thesis

The thesis has been divided into four parts: an introduction and review; the design

of the PAPA camera; the theory of group delay tracking; and the presentation and

discussion of experimental work.

Part I includes this chapter, and will be completed with a review of fringe

tracking methods, which follows in Chapt. 2. Only methods which use wavefront-

tilt compensation are considered in the review. Previous investigations of group delay

tracking are discussed, and the different approaches to the data analysis are presented.

Part II is devoted to the description of the PAPA camera which was built

as part of this work. Both practical and theoretical aspects of the design of PAPA

cameras are presented in Chapt. 3. Included there is a review of previous designs,

a discussion of optical tolerances, and a description of image artifacts. The rebuilt

detector is described in Chapt. 4, where the design choices are discussed and the

camera’s performance is presented.

Part III describes the theory and limitations of using the Fast Fourier Transform

for group delay tracking. The discussion is introduced in Chapt. 5, where the approach

to the subject is outlined. The influence of the detector on the measurement, including

the resolution and the response to large delays, is shown in Chapt. 6. Signal-to-noise

issues and the probability of tracking error are presented in Chapt. 7 where the low

light level limitations are discussed. The effects of atmospheric turbulence are then

reviewed in Chapt. 8 and its influence on the tracking is predicted.

Part IV discusses the experiments which were performed to test group delay

tracking. Chapter 9 describes the hardware that was built to calculate a power spec-

trum from the photon data, and also details the signal processing software that is

used. The laboratory experiments and the stellar observations are then presented in

Chapts. 10 and 11.



Chapter 2

Fringe Detection in Stellar

Interferometry

2.1 Fringe Tracking with Wavefront Tilt Compensation

Methods of fringe detection and tracking will now be reviewed, with the discussion

limited to those methods that use small apertures and wavefront tilt compensation.

It is perhaps surprising that even without tilt correction it is still possible to record

fringes. However, a two-dimensional detector must be used in either the image plane or

the pupil plane of the combined beams. The interpretation of the fringes is then more

difficult, but is facilitated if the light is dispersed, because the slope of the fringes as a

function of wavelength yields information about the optical path difference. Examples

of this are discussed by Vakili et al. (1988), Rabbia (1988), and Schumacher et al.

(1992).

When apertures smaller than r0 are used the interfering wavefronts are es-

sentially flat, and with tilt correction they can be made parallel; the optical path

differences then depend on only one parameter—the difference in arrival times of the

two plane waves. Interferometers which have used tilt correction include the proto-

type at Monteporzio (Tango, 1979), the 11.4 m Sydney University Prototype (Davis &

Tango, 1985), the Mark III interferometer (Clark et al., 1986), the Cambridge Optical

Aperture Synthesis Telescope (Cox, 1992), and the Sydney University Stellar Inter-

ferometer (ten Brummelaar, 1992). Tilt correction is considered an essential part of

most modern stellar interferometers.

After a brief outline of some background theory, the coherence envelope is

discussed followed by a description of delay curve measurements. Methods of active

fringe tracking are described, and group delay tracking is introduced. The results of

previous work in this field are then summarised.

11
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2.2 The Interference of Quasi-Monochromatic Light

The expression for the interference of quasi-monochromatic light has been derived by

many authors, see for instance Hecht (1987). The intensity of the combined light can

be expressed as

I = I1 + I2 + 2
√

I1I2 |γ12| cos(α12 − ϕ),

where

ϕ =
2π

λ
(s2 − s1).

λ is the wavelength of the light, I1 and I2 are the intensities of the light in each arm

of the interferometer, and γ12 is the complex degree of coherence with modulus |γ12|
and argument α12 − ϕ, where ϕ arises from the path difference, and α12 contains

information about the source. The pathlengths s1 and s2 are the same as described

previously in §1.1. The contrast, or visibility, of the fringes is the ratio of the fringe

amplitude to the total background illumination,

V =
2
√
I1I2 |γ12|
I1 + I2

.

If we make a change of variables introducing the spectroscopic wavenumber κ = 1/λ,

letting

Is = 2
√

I1I2, Ib = I1 + I2 − Is,

and

x = (s2 − s1),

then we have

I(κ, x) = Is

[

1 + |γ12| cos(2πκx− α12)
]

+ Ib. (2.1)

The substitution of x = s2 − s1 indicates that tilt correction is being used in the

combined beams. Under conditions where I1 = I2 then the visibility of the fringes is

the modulus of the complex degree of coherence,

V = |γ12|.

A source that is not quasi-monochromatic may still be treated as such if it is

observed with an instrumental bandwidth that is sufficiently small. Bright fringes will

occur wherever the path difference x is an integer multiple of 2π at most wavelengths.

This will be so at all wavelengths only when x is zero and when the dispersion is

the same in each arm of the interferometer. The reduction in the fringe visibility at

increasing values of x is described by the coherence envelope.
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2.3 The Coherence Envelope

All interferometers observe fringes over a finite bandwidth, and the recorded intensity

is the integral of I(κ, x), over wavenumber, weighted by a filter function W (κ).

I(κ̄, x) =

∞∫

−∞

W (κ− κ̄) I(κ, x) dκ, (2.2)

where κ̄ is the center of the passband.

The filter function includes both the shape of the bandpass and the frequency

response of the detector; it has values that are large within the bandwidth, and near

zero outside. The result of this averaging is to reduce the sensitivity of the interfer-

ometer to fringes of large delay: when the bandwidth ∆κ partially spans a fringe (in

the wavenumber domain κ) then the visibility appears to be reduced. This is simple

to illustrate.

Let us introduce a change of variables, such that κ′ = κ− κ̄, and perform the

integration in Eq. 2.2 with respect to κ′. If we insert Eq. 2.1 into Eq. 2.2 and rearrange

the terms we have

I(κ̄, x) = Is [ 1 + |γ| cos(2πκ̄x− α)
∞∫

−∞

W (κ′) cos(2πκ′x) dκ′

− |γ| sin(2πκ̄x− α)
∞∫

−∞

W (κ′) sin(2πκ′x) dκ′ ] (2.3)

where the subscripts have been dropped from γ12 and α12. Now if we define Ω(x) as

the Fourier transform of W (κ), then we have:

Ω(x) = |Ω(x)| ejφΩ =

∞∫

−∞

W (κ)ej2πκx dκ,

and therefore

|Ω(x)| cosφΩ =

∞∫

−∞

W (κ) cos(2πκx) dκ,

|Ω(x)| sinφΩ =

∞∫

−∞

W (κ) sin(2πκx) dκ.

Equation 2.2 may therefore be written in the form

I(κ̄, x) = Is

[

1 + |γx| cos(2πκ̄x− α+ φΩ)

]

(2.4)

where the apparent visibility |γx| is the product of the true visibility and the modulus

of the Fourier transform of the filter function, evaluated at the current delay:

|γx| = |γ| |Ω(x)| .
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The transfer function Ω(x) describes the coherence envelope. If W (κ) is symmetric

then Ω(x) is real valued, φΩ = 0, and only at zero delay, where the envelope is at its

peak, is the true visibility observed.

The above calculation is more difficult if there is unequal dispersion in the

two arms of the interferometer, or if the spectrum of the source has structure within

the passband. The central fringe will then be displaced and the overall visibility of

the fringes will be reduced, because there will no longer be a single delay for which

constructive interference occurs at all wavelengths (Tango, 1990).

A Rectangular Bandpass

If a detector has a rectangular bandpass then its coherence envelope would resemble

a sinc function:

W (κ) =

{

0, |κ| > ∆κ/2

1, |κ| < ∆κ/2
and Ω(x) = |∆κ| sinπx∆κ

πx∆κ
.

If a bandwidth of ∆λ is used at a wavelength λ, then the same interval expressed

in wavenumber is as follows:

∆κ =
1

(λ−∆λ/2)
− 1

(λ+∆λ/2)
, therefore ∆κ =

∆λ

λ2 − (∆λ/2)2
.

If we assume that the fractional bandwidth is very small then we can ignore the second

term in the denominator.

∆κ =
∆λ

λ2
.

The sinc function is characterised by the location of its first zero crossing, where

x = 1/∆κ. This distance can be thought of as the coherence length of the starlight

under observation. If, for instance, a bandwidth is 0.4 nm is used at a wavelength

of 450nm, then the coherence effects will be seen when the delay offset is less than

∼500µm. The observed visibility will increase as the delay approaches zero, decrease

as zero delay is passed, and eventually approach the level of the noise when the delay

exceeds the coherence length.
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2.4 Measurements of Delay Curves

Tango & Twiss (1980) describe the estimation of visibility based on measurements

of the coherence envelope. This technique has been used at the Monteporzio inter-

ferometer (Tango, 1979) and also at the Sydney University 11.4 m Prototype (Davis

& Tango, 1985). A photomultiplier is used to count the number of photons received

in each of the combined beams, and observations are gated to timescales where the

atmosphere is stable. The recorded photon counts in each channel, A and B, are

proportional to the intensity of the light received there.

A ∝ Is[1 + |γx| cos(2πκx− α)],
B ∝ Is[1− |γx| cos(2πκx− α)],

where |γx| is the apparent visibility, and the difference in sign is brought about by

the optical beam combiner. The total light in the system is always 2Is: if fringes are

present then one beam becomes brighter as the other becomes dimmer.

A visibility estimate may be derived by forming the ratio of the squares of the

sum and difference terms of A and B.

[

|γx| cos(2πκx− α)
]2

=
(A−B)2

(A+B)2
.

The phase of the fringes is embedded in the measurement and must be removed if the

magnitude of the visibility is to be found.

In the absence of fringe tracking the pathlengths in each arm will vary accord-

ing to the atmospheric turbulence. Consequently, the phase-difference will wander

about the mean open-loop tracking position, and will change from one sample time

to another. However, when narrow bandwidths are used these phase variations, of 10

wavelengths or more, represent only a small fraction of the coherence length, and so

despite the fringe wander the location on the envelope will remain roughly constant.

The apparent visibility is then measured by averaging a large number of samples to

eliminate the phase term. The delay-line can then be stepped to move through the

coherence envelope, with measurements of the visibility |γx| made at each location.

This produces what Davis & Tango (1986) have called a delay curve. If the shape of

the bandpass is known then a model of the coherence envelope can be fitted to the

data allowing the peak value, |γ|, to be interpolated.

At zero delay the observed visibility of an unresolved star ought to be unity,

but in practice that is never the case, because phase aberrations are introduced from

several sources. The optical surfaces within the interferometer cannot be perfectly

flat, the incoming light must pass through a series of diffracting apertures, the vacuum

windows and beam-splitters may be non-homogeneous, and there will always be small

atmospheric phase errors, even after tilt-correction. The visibility measurements must
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therefore be calibrated using observations of unresolved stars. Davis & Tango (1986)

used this approach to measure the angular diameter of α CMa with β CMa as a

calibrator.

Limitations of Envelope Tracking

The major drawback of envelope observations, or envelope tracking as it is termed, is

the low signal-to-noise ratio. Narrow bandwidths, typically 0.5–1.5 nm, are necessary

for this method to work, and consequently few photons arrive in a sampling interval.

A large number of samples need to be integrated to reduce the noise, and for even the

brightest stars an observation time greater than 15 minutes is required to record the

delay curve. The expected signal-to-noise ratio for this mode of operation is discussed

by Tango & Twiss (1980).

If the baseline of the interferometer is not precisely known then there will

be a systematic error in the rate of delay tracking, causing the coherence envelope

to move. As a result the measured envelope will appear expanded or contracted,

dependent upon the direction of the tracking error. If the baseline estimate is poor

then the fringe envelope may drift so quickly that fringes cannot be detected. However,

once fringes are observed, the tracking can be iteratively improved by monitoring the

motions of the envelope. Adjustment are made to the baseline estimate (and therefore

the tracking velocity) until the envelope remains stationary. All changes must be

performed through human intervention, and this method is therefore time consuming

and inefficient.

2.5 Pathlength Modulation

There are many ways to determine the phase of a wavefront, but all require a time-

dependent phase modulation (Creath, 1988). One technique, described by Wyant

(1975) and related to methods in Fourier spectroscopy (Connes, 1970), has been suc-

cessfully used in the Mark III interferometer (Shao & Staelin, 1977; Shao & Staelin,

1980; and Shao et al., 1988). In that instrument the red portion of the spectrum,

∼650–900 nm, is used for white-light fringe tracking, and three selected spectral-

bands, each 20 nm wide, are used for data collection; these are set by interference

filters and are typically located at 800, 550, and 450 nm (Mozurkewich et al., 1991).

Although the bandwidth of the fringe tracker has a coherence length of only 1.8 µm,

the coherence length for the data collection is between 8 and 25 µm. Data is only

collected when the fringe tracker is locked onto the fringe.

In this technique the pathlength in one arm of the interferometer is modulated
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so that x = x̄+ xn, and the fringe then takes on the form

I(κ, x) = Is

[

1 + |γx| cos
(

2πκ(x̄+ xn)− α
)]

,

where

xn = λ̄
n

4
, n = 0, 1, 2, 3.

In practice the pathlength is not stepped, but is varied as a triangle wave with a

peak-to-peak amplitude of one wavelength, λ̄ = 800 nm. An example of integrating

across a waveform is given by Wyant (1975) and the principle is discussed by Creath

(1988) who calls this the ‘four bucket’ technique. During the course of one cycle, the

photon counts A, B, C, and D are recorded,

A ∝ Is

[

1 + |γx| cos(2πκx̄− α)
]

,

B ∝ Is

[

1− |γx| sin(2πκx̄− α)
]

,

C ∝ Is

[

1− |γx| cos(2πκx̄− α)
]

,

D ∝ Is

[

1 + |γx| sin(2πκx̄− α)
]

,

so that

2πκx̄− α = tan−1
(
A− C
D −B

)

,

and

|γx|2 ∝ (A− C)2 + (D −B)2

A+B + C +D
.

The pathlength x̄ can therefore be determined and fringe phase can be tracked (Shao

& Staelin, 1980). Although a 2π ambiguity exists in the measurement, there are phase

‘unwrapping’ procedures which can be used to track large path changes (Colavita et

al., 1987). The visibility measurements at each wavelength are calculated by a different

equation which subtracts the dark counts and removes the photon-noise bias (Shao et

al., 1988).

There are obvious advantages to this approach as compared with envelope

tracking. The most important is that wide bandwidths are used for fringe location.

The Mark III uses a photon-counting avalanche photodiode, a bandwidth of 650–900

nm, and apertures 7.5 cm in diameter. This yields a magnitude limit of ∼4.5 for

its fringe detection (Mozurkewich et al., 1991; Armstrong et al., 1992). Envelope

measurement, however, are limited to bright stars at short baselines.

The paths are modulated for a wavelength of 800 nm, and for observations at

the shorter wavelengths, at 550 and 450 nm, it is necessary to rebin the data. It must

appear to the data processor that the modulation is one wavelength peak-to-peak,

simultaneously at each of the three different wavelengths. A dead-time is therefore

inserted in the data processing around the peaks of the triangle wave (Mozurkewich et
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al., 1991). Data points are ignored when path excursions are greater than the desired

wavelength, and boundaries of the A, B, C, and D bins are re-defined. Data is thrown

away and, of course, this reduces the sensitivity.

The new optical table of the IT2 interferometer (B. Sorrente et al., 1992) also

uses path modulation, but within a sub-interferometer that is separate from the main

instrument. Measurements of pathlength therefore do not interfere with visibility

measurements. This is an interesting approach, since it avoids the problem discussed

in the previous paragraph. However, path equality in the sub-interferometer would

not imply the same in the main instrument, since there would be added pathlengths

involved.

2.6 Channeled Spectra and Group Delay Tracking

There is only one other method that has been discussed in the literature for delay

tracking using small apertures with wavefront-tilt correction. This has become known

as Group Delay Tracking, and relies on the observation of fringes in dispersed stellar

spectra. The spectrum of the combined starlight will be modulated by fringes when-

ever the pathlength difference between the two arms of the interferometer is non-zero.

These have been termed Edser–Butler fringes, or fringes of equal chromatic order, and

produce a channeled spectrum (Steele, 1987). If the aperture pupils were superim-

posed and the wavefronts were parallel when combined, then the bright bands of the

fringes will be perpendicular to the direction of dispersion. This is expressed by the

wavelength dependence contained in Eq. 2.1. Dispersing the light allows the fringes

to be seen even when the path difference is several hundred wavelengths (Michelson

& Pease, 1921). Steel (1987) states that

Fringes of equal chromatic order provide the most sensitive method of

adjusting the interferometer delay to obtain maximum visibility with a

source of finite spectral bandwidth. It is an old technique... used by

Michelson & Pease (1921), and frequently rediscovered since.

The re-discoveries include work published in the last five years (Smith & Dobson,

1989). The same principles have been used previously to study the thickness of thin

films, as discussed by Born & Wolf (1986). The number of fringes in the spectrum, n,

is directly proportional to the pathlength error: reducing the fringe frequency brings

the delay closer to zero. It can be seen from Eq. 2.1 that

n =
x

λmin
− x

λmax
.

All that is needed to track the delay, x, is to determine the number of fringes contained

in the spectrum, or the frequency of the fringes.
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The idea of applying this technique to modern stellar interferometry has been

attributed to Steel by Tango & Twiss (1980), and also to Labeyrie by Koechlin

(1985). There have been several papers in conference proceedings which have dis-

cussed the probable limitations of the method. These include simulations for the

IOTA project performed by Nisenson & Traub (1987) and Traub (1990a); simulations

for the COAST interferometer performed by Buscher (1989); and signal-to-noise pre-

dictions for ‘photon-starved’ operation with the Mark III interferometer (Shao et al.,

1988). It has also been reviewed along with other methods applicable to space-based

optical interferometry (Shao & Colavita, 1992). But to the author’s knowledge the

only experiments using starlight were performed by Kim (1989) as part of his Masters

thesis at the Massachusetts Institute of Technology, in conjunction with the Mark III

group. The different approaches to the data processing will now be reviewed.

2.6.1 Model fitting by least-squares

Traub (1990a) describes a method which uses a cross-correlation of the data with

model functions. It is assumed that a family of functions exist which will closely fit

the data providing certain parameters are adjusted. For example a model may be

written

fk(x) = Ik [1 + |γk| cos(2πκkx+ φk)] ,

which accounts for the shape of the stellar spectrum Ik, a varying visibility of the

fringes |γk|, non-linearities in the detector κk, and fringe spacings for arbitrary delays

x. It follows that if all these parameters are chosen correctly then it will minimise the

least-squared difference between the data and the model. If we were to consider the

delay by itself then we would perform the minimisation by taking the partial derivative

with respect to x of the mean squared difference, equating it to zero, and solving for

the delay. If the data are represented by the set gk then we have

∂

∂x

[
K∑

k=1

[gk − fk(x)]2
]

= 0,

which can be written in full as

∂

∂x

[
K∑

k=1

[

g2k − 2gkfk(x) + f2k (x)
]
]

= 0.

In this equation only the cross term is of interest. The sum of the g2k terms is a constant

and contributes nothing to the minimization. Furthermore, if the model fk(x) was

normalised correctly then the sum of the f 2k (x) terms would be independent of x, and

therefore would also be a constant. We can now express the minimization of the mean

square difference as

∂

∂x

[
K∑

k=1

gkfk(x)

]

= 0,
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where the function fk(x) maximizes the sum of the cross terms. The quantity in

brackets is simply the cross-correlation between the model and the data, calculated

at zero lag. Traub (1990a) presents simulations of pathlength motions with peak-to-

valley excursions of 1.3 µm over 1 second with |γ| = 1.0. He concludes that delay

tracking should be possible at count rates as low as 10 photons per coherence time,

with a position uncertainty of ∼0.2λ.

2.6.2 Optimal and Kalman filtering

It should be noted that the statistics of the noise are not accounted for using a cross-

correlation, and it is therefore not an optimal filter. The concept of optimal, or Wiener

filtering, requires knowledge of the noise process: the power spectra of the noise and

signal are used to determine the shape of the filter. If the noise is absent then no

filtering occurs, but if the noise dominates then most of the detected power is rejected

by the filter (Press et al., 1992, §13.3).

The Kalman filter is a recursive linear mean-squared estimator (Kalman &

Bucy, 1961) and has been described in several texts, including Bryson & Ho (1969)

and Boziz (1979). A volume of selected reprints describing Kalman filters has been

published by IEEE Press (Sorenson, 1985). It is historically important because the

recursion permitted a tremendous reduction in computational requirements, and it

was expressed in a framework that had a unifying influence on previous research

(Sorenson, 1970). Although the filters are designed to estimate parameters that have

a linear relationship with the measured data, they have seen their greatest application

in non-linear systems. This has included the determination of aircraft trajectories,

spacecraft orbits, power station control, and the demographics of cattle production

(Sorenson, 1983). Non-linear processes must be ‘linearized’ by approximating their

behavior with linear equations, at least in the neighborhood of the current estimate,

and this may include the derivatives of parameters as well. If the approximation errors

become large then the solution will diverge.

Kalman filters were mentioned by Nisenson & Traub (1987) in connection with

group delay tracking, as a possible means of improving the performance of power

spectrum analysis. Reasenberg (1990) used a Kalman filter in simulations to evaluate

their use with the IOTA interferometer. However, the performance of his filter is

difficult to judge based on his presentation, which is restricted to a discussion of the

useful model parameters. He does not discuss the low light level limitations, but

observes that filters which include estimates of the rate-of-change of pathlength would

be more accurate than ones which estimate pathlength difference alone.
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2.6.3 Spectrum analysis and the Fast Fourier Transform

The frequency of the fringes in the channeled spectrum can be determined using

methods of power spectrum analysis. One of the simplest and quickest is the Fast

Fourier Transform (FFT). It will be compared to other methods.

Modern Spectrum Analysis

Approaches to spectrum analysis are frequently based on the use of the FFT. Although

it is computationally efficient, it suffers from several drawbacks—notably the poor

resolution, aliasing, and spectral leakage (discussed in Appendix F). The review of

modern spectrum analysis by Kay & Marple (1981) therefore begins with a discussion

of the FFT, and proceeds to use it as a touchstone for comparing other methods.

Each new technique has developed based on a different model for the signal and uses

different parameters to characterize the underlying process.

The utility of a particular technique depends on how well its assumptions model

the data. For instance, the FFT assumes that the data represent a series of harmoni-

cally related sinusoids. If there exists one sinusoid that does not coincide with any of

the harmonics, then its corresponding power spectrum will be poorly reconstructed.

Likewise, if the data were sampled at irregular intervals then the spectrum will be

distorted. Advances in spectrum analysis have come from deriving power spectra

from more accurate assumptions. A selection of the different models is given in Table

III of the review by Kay & Marple (1981). These include models which contain a

sum of non-harmonically related sinusoids (Prony spectral line decomposition, and

Pisarenko harmonic decomposition), non-harmonically related damped exponentials

(Extended Prony Method), autoregressive or all-pole processes (AR and Maximum

Entropy Method), moving average or all-zero processes (MA), and autoregressive

moving average or pole-zero processes (ARMA). Techniques are also available that

will process data that were sampled on an irregular grid, or that have samples missing

(Press et al., 1992 §13.8). This would be common in records of channeled spectra when

there are fewer photons per frame than detector pixels. In the Lomb–Scargle method

the missing samples do not contribute to the calculation of the power spectrum; by

contrast the FFT treats missing samples as zero-valued and gives them equal weight

in the calculation (Press & Rybicki, 1989). Spectacular improvements are possible if

the proper model is chosen and a strong signal is present.

Unfortunately, these methods will fail when they are asked to derive spectra

from processes that deviate from their model. This can occur for AR methods simply

by adding observation noise to the data: at low signal-to-noise levels the resolution

is no better than an FFT approach (Kay & Marple, 1981). Moreover, most of the

methods are ill adapted for real-time processing. While it may be possible to determine
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the parameters that describe the spectrum, one must then recalculate the spectrum

numerous times to find the peak, performing lengthy summations. Even the ‘fast’

version of the Lomb–Scargle method, although it uses an FFT, is not a real-time

method.

The Fast Fourier Transform

The characteristics of the FFT and its relationship to the integral Fourier transform,

are described in Appendix F. It is identical to the Discrete Fourier Transform (DFT),

but bears a different name because of the algorithm used to implement it. The FFT

is an obvious candidate for real-time applications, as there exist integrated circuits

which will calculate long FFTs in less than a millisecond, fast enough to track phase-

difference changes in atmospheric turbulence.

There are two basic ways of using an FFT to compute power spectra: the

first is the Blackman–Tukey algorithm, and the second is the periodogram (Kay &

Marple, 1981). The Blackman–Tukey method is a discrete time implementation of the

Wiener–Khinchin theorem; the autocorrelation of the data is formed and then Fourier

transformed to arrive at the power spectrum. It was the most popular form of power

spectrum estimation prior to the introduction of the FFT. The periodogram estimate

is a more direct approach of applying a discrete Fourier transform to the data and

calculating the mean squared value of the magnitude of each frequency component.

The two methods are not equivalent, however, under most circumstances they will

yield identical results and have the same properties.

Nisenson & Traub (1987) ran simulations using the periodogram and concluded

that tracking would be possible with as few as 3 photons per frame. The simulations

included path-difference changes in the form of a random-walk, fringe visibility of

|γ| = 1.0, and an integration of 100 frames, each 10 ms long, to represent one second’s

worth of data. Buscher (1988; 1989) performed similar work, this time using path

motions which were derived by the Kolmogorov–Taylor approximation (see Chapt. 8).

Much larger pathlength changes were modelled and a low-pass filter was used with

a time constant of 75 frames. The fringe visibility was chosen to be |γ| = 0.25 and

simulations were run for 4, 8, 16, and 32 photons-per-frame. The results indicated

that tracking would be possible for between 8 and 16 photons-per-frame.

Colavita and Shao (1988) described the signal-to-noise characteristics of group

delay tracking for ‘photon-starved’ conditions, where there would be too little light

for active fringe tracking. A similar discussion appeared in their paper describing

the Mark III interferometer (Shao et al., 1988). They suggested that the limiting

magnitude would be set by an observation time of 4000 seconds, just over an hour, and

presented a simulation with 2.5 photons per frame. Furthermore, they announced their

intention to test group delay tracking at the Mark III. This was to be using the PAPA
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camera they have for tilt-correction (Clark, 1986) also described by Gonsiorowski

(1986), and processing the data with the Blackman–Tukey algorithm.

Those tests were the basis for the Masters thesis by Kim (1989). He observed

the stars α Lyr, η Cyg, δ And, and α And, on the nights of 22–24 July, 1988. Channeled

spectra were observed over a bandwidth of 420–690 nm, and the autocorrelation was

accumulated for 16 seconds in each case (a total of 4094 frames) before being Fourier

transformed. No attempt was made to actively track the fringes, but ‘snap-shots’ were

taken to locate the delay. He found that it was possible to detect fringes with as little

as 2–4 photons per frame.

2.7 Conclusion

The methods of fringe detection and tracking have been reviewed, considering only

those that employ active wavefront tilt correction. Fringe tracking allows an inter-

ferometer to operate with greater precision and sensitivity. Larger bandwidths are

then possible, and fainter objects can be observed. The tracking permits operation at

longer baselines as well, where envelope measurements would be difficult because of

large path difference changes.

It was shown that with envelope observations the sensitivity of an interferom-

eter is limited because narrow bandwidths must be used. It is therefore desirable to

track the delay, and bring it closer to the zero offset. Pathlength modulation was

discussed as a method of estimating the phase of the white-light fringe, permitting

bandwidths of up to 20 nm to be used for data collection.

Group delay tracking was then presented, and different methods of data pro-

cessing were discussed. This form of tracking has several advantages over the others:

there is no 2π ambiguity in the location of the fringe position, it yields a much larger

coherence length for fringe detection, and it will allow operation at extremely low

light levels. Whereas pathlength modulation fails for photon fluxes of ∼30 photons

per frame (Shao and Staelin, 1980), group delay observations should allow active fringe

tracking at ∼10 photons per frame and passive detection at 3 photons per frame.

The theory of group delay tracking will be examined in detail in Part III of the

thesis, but now let us turn to Part II and the description of the PAPA camera.
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Chapter 3

The Design of PAPA Cameras

3.1 Introduction

A PAPA camera is a fast photon-counting array detector that was developed at Har-

vard University in the early 1980s for use in speckle interferometry (Papaliolios and

Mertz, 1982; Papaliolios et al., 1985). It provides photon by photon imaging with high

time resolution, preserves time-of-arrival for each photon event, and will operate with

count rates as high as 1 million photons per second if not restricted by data handling.

The camera is well suited for work in speckle and Michelson stellar interferometry,

where it is necessary to make short exposure images through a turbulent atmosphere.

Although the acronym PAPA is said to stand for Precision Analog Photon

Address camera, it no doubt owes more to the name of one of its inventors, Costas

Papaliolios, and to the previous existence of a MAMA camera (Slater et al., 1990).

A PAPA camera was first used for astronomical observations in November 1983, and

has since been the main detector for the speckle group at the Harvard–Smithsonian

Center for Astrophysics (CfA). It has been used by them to observe an optical source

near T Tauri (Nisenson et al., 1985), the α Orionis triple system (Karovska et al.,

1986), the Halo binary µ Cas (Karovska et al., 1986), NGC 1068 and NGC 4151

(Ebstein et al., 1989), and SN 1987A (Nisenson et al., 1987; Papaliolios et al., 1989;

Karovska et al., 1989). While on loan to other groups it has also been used to study

the asteroid 4 Vesta (Drummond et al., 1988), and pluto’s moon Charon (Beletic et

al., 1989).

In 1988 one of the co-developers, Peter Nisenson, arranged to build five cameras

as a cooperative effort with other research groups, including the University of Sydney.

These were based on the camera design of Adaptive Optics Associates (1988), also

described by Gonsiorowski (1986). They incorporate a dual-stage image intensifier,

a large collimating lens, numerous small zoom-lenses, and a single large mask plate.

Construction began at Harvard in 1989 and was completed in late 1990. However, the

26
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Figure 3.1: The layout of the PAPA camera optical components. Arriving photons
are represented by bright photon events at the output of the intensifier. As they
arrive, one by one, they are re-imaged onto an array of masks to optically encode
their coordinates.
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camera received in Sydney proved to have optical and mechanical faults that made

it unsuitable for astronomical research. It was therefore dismantled, redesigned, and

rebuilt to eliminate vignetting artifacts, to improve the optical alignment, and to

include improved analog electronics. The new camera was completed in July of 1992.

Its design and performance are presented in Chapt. 4.

This chapter contains a review of the design principles of the PAPA camera.

The theory of operation is described in §3.2, including a description of the Gray

coded masks and the optical alignment of the system. The use of image tubes, the

magnification tolerances of the small lenses, and the choice of their focal lengths

are presented in §3.3. The history of the design, from the earliest prototype to the

present model, is reviewed in §3.4, and finally, the artifacts in PAPA camera images

are detailed in §3.5, where the symptoms and methods of correction are given.

3.2 Address Decoding with Optical Masks

3.2.1 Principle of operation

The front end of the PAPA camera is a cooled single or dual-stage image intensifier.

Photons arriving at the input photocathode produce bright spots, or photon events,

at the output phosphor. It is assumed that single photon events appear one by one at

the output, so that over a short sample time the output of the intensifier is a uniformly

dark field containing only one photon event. The camera is designed to determine the

location, or address, of the photon event in that aperture.

The output of the intensifier is imaged onto an array of masks. There is an

image and mask for each bit of address information, both x and y, and a single clear

mask used as a strobe to indicate the presence of a photon event. Therefore, to define

a field of 2m by 2n pixels, m+ n+ 1 masks are required.

Each mask represents one bit in the address of a pixel. The masks are opaque

where the address bit is off, and transparent where it is on. The masks change state

as the addresses progress along the x or y axis of the image and appear as sets of

horizontal or vertical stripes. Whether or not light from the photon event passes

through a mask determines the state of a bit in the event’s address: if it passes

through then that bit is on, and if it doesn’t then that bit is off. By observing all

masks simultaneously the event’s address can be determined.
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3.2.2 Optical design

Figure 3.1 shows a component view of the optics of a PAPA camera. Although the

number and arrangement of masks may differ from one camera to the next, the optical

design is essentially the same. The following description, including the dimensions

quoted, is typical of most cameras.

Photon events are produced from a 25 mm diameter second generation image

intensifier containing a microchannel plate. The high gain of the microchannel plate

ensures that each photon event is represented by tens of thousands of photons. The

P-47 phosphor is used on the output for its short decay time, improving the speed

of the camera and minimizing the chance of event coincidences. The image tube is

followed by a high quality, large diameter lens (95 mm or greater), which collimates

the light. An array of lenses is then packed within the effective aperture of the large

lens, so that each produces its own separate image on the mask plate which follows.

The magnification of each image is determined by the ratio of the effective focal

lengths of the array lenses to that of the collimating lens, typically 0.5, with the focal

lengths of the array lenses carefully matched to meet the required tolerance. The

mask plate contains all the masks as separate chrome patterns, deposited by optical

micro-lithography. They are designed for an image size of about 10 mm square, and

thus an appropriate square or circular field stop is placed at the image intensifier.

The final stage of the optical system is for photon detection. A field lens is

placed behind every mask to image the aperture of each array lens onto the surface of

a photomultiplier tube, as is used in radiometer design (Driscoll, 1978). The output

of each tube is then converted to voltage pulses which are processed by analog and

digital circuitry to yield the photon address.

3.2.3 Alignment of Gray coded masks

In the PAPA camera the Gray code is used for the design of the optical masks. This

helps reduce the magnitude and frequency of address errors. The Gray code is a

binary code that has the remarkable property that only one bit changes in going from

one sequential number to the next (Press, 1992). This implies that only one mask

edge defines the border between any two pixels. If a photon event lands at a mask

edge an address error may occur, but the result of that error is an address that is

only one pixel removed from its true address. The uses and properties of Gray codes

have been reviewed by Gardner (1972). Heath (1972) also discusses cyclic permuted

(Gray) codes and how they were used in Emile Baudot’s first telegraph, exhibited at

the Universal Exposition in Paris in 1878. The code which Frank Gray re-invented in

the 1940’s was intended for use in pulse code modulation, and is now commonly found
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Masks for 4 Bit Gray Code

Mask 0

Bit 3

Mask 1

Bit 2

Mask 2

Bit 1

Mask 3

Bit 0

Figure 3.2: Gray coded masks for 4-bit address decoding.

in shaft encoders and similar devices. The Gray code and its relationship to normal

binary is illustrated in Figs. 3.2 and 3.3.

The images must be aligned on the masks for the address decoding to be suc-

cessful. The edges of mask stripes define pixel boundaries, and therefore the image on

each mask must be located appropriately to within a small fraction of a pixel. Hence

it is crucial for the magnification of each array lens to meet strict tolerances; if they

do not, the mask edges will occur at incorrect intervals and alignment will not be

possible.

Let us consider an 8-bit camera with 17 masks: 8 masks for each of the x and

y axes, and a single clear mask as a reference strobe. The Sydney University camera

uses this design, and the layout of its mask plate is illustrated in the next chapter,

in Fig. 4.2. The alignment of these masks is presented in Fig. 3.4 where each mask

is shown aligned with respect to the finest and coarsest masks. The coarsest mask,

which divides the field in two and bisects an opaque stripe of the finest mask, defines

the center of the image. All other masks are aligned with reference to the center.

The masks are also shown in alignment at the top of Fig. 3.9, but without the pixel

boundaries indicated. Note that the stripes of the finest mask are two pixels wide.

The alignment can be observed by illuminating selected pairs of masks and

back-projecting their images through the lens system onto the output surface of the

image intensifier, or onto a fiber-optic faceplate located there (Papaliolios and Mertz,

1982). The relative alignment of masks can be found in the overlapping images and

viewed with a traveling microscope. The alignment is done by moving the mask images

with respect to each other according to the alignment chart of Fig. 3.4. The masks

belonging to one axis are aligned by rotating the imaging lenses in front of each mask.

If the lens’s mechanical axis and optical axis do not coincide, as is generally the case
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Base 10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Binary

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Gray

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

Figure 3.3: A comparison of binary and Gray code: In going from one Gray
coded number to the next only one bit changes state, whereas in normal binary
it is common for many bits to change.

for commercially available lenses, rotating the lens will cause a mask image to move in

a circle. This provides the range of adjustment needed in either the x or y direction.

Further range could be provided using plane parallel plates of glass placed at

an angle between an array lens and its mask. They, however, introduce spherical

aberration in the images (Smith, 1990), and are unnecessary if the lenses themselves

provide adequate range.

3.3 Design Parameters

There are several design parameters of the camera worth discussing. Of foremost

importance is the image intensifier as it is the limiting factor of system sensitivity.

The magnification tolerances of the small lenses will then be discussed: it is because

of the severe tolerances required of these lenses that so few successful cameras have

been built. The proper choice of focal lengths for the collimating and array lenses

will then be reviewed. It will be shown that the large field angles necessary for an

optically fast design almost preclude the use of achromatic doublets.
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Figure 3.4: The alignment chart. This shows each mask properly aligned with
respect to the 0 order and 7th order masks. Every second pixel boundary is
defined by the stripe edges of the finest mask, the 7 mask. Half of the remaining
mask boundaries, those which lie within the transparent stripes of the 7 mask,
are defined by the edges of the 6 mask. All other pixel boundaries lie within the
opaque stripes of the 7 mask and are defined by the edges of the 5, 4, 3, 2, 1, or
0 masks.
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3.3.1 Image tubes and photon counting

The choice of image intensifier influences the camera’s resolution, noise properties,

dynamic range, detective quantum efficiency, and the pulse height distribution of

photon events. For photon counting applications one would like an image tube with

a high quantum efficiency, high gain, and a pulse height distribution which exhibits

a strong peak, allowing discrimination against system noise. Both first and second

generation image tubes have been used for photon counting.

First generation intensifiers produce photoelectrons from a semi-transparent

cathode. These are accelerated across roughly 15 kV, are focused by electrostatic or

magnetic fields, and then arrive at a phosphor screen. First generation tubes have a

pulse height distribution suitable for photon counting applications, but have too low

a gain for them to be useful as a single stage. To achieve high gain the intensifiers are

commonly cascaded, with up to four tubes in a chain. Unfortunately, distortion and

vignetting may occur, the effective decay time of the phosphor may be lengthened,

and image blooming can appear in the region of bright sources. The development of

microchannel plate (MCP) technology was seen as a way to circumvent these problems.

The microchannel plate consists of thousands, or millions, of minute glass tubes

all packed together in a thin wafer. A microchannel is typically 10 µm in diameter

and is coated to act as a continuous electron multiplier. Photoelectrons hitting the

channel walls cause an avalanche of secondary events which cascade down the length

of the channel. Because of their small size and closed packed structure, the spatial

information in the image is maintained. Their characteristics have been described

by several authors. Perhaps the best introduction to microchannel plates is given

by Corbett (1992) contained in the Photonics Handbook. Overviews of the history

and development of MCPs are given by Leskovar (1977) and Lampton (1981). The

review article by Wiza (1979) contains the results of numerous experiments on MCPs

of different architectures. Night vision systems with MCP intensifiers are discussed in

the review by Pollehn (1980). The book Image Tubes by Illes Csorba (1985) is also a

useful reference. Current developments in MCP technology are covered yearly in the

conference proceedings of the Society of Photo-optical and Instrumentation Engineers

(SPIE); the proceedings of the 1989 conference held in Los Angeles, Vol. 1072, and

the 1990 conference in Santa Clara, Vol. 1243, are particularly interesting.

Image intensifiers employing microchannel plates are termed second generation.

With a microchannel plate high gain can be achieved in a single stage, obviating the

need to cascade the tubes. Furthermore, the appearance of veiling glare, due to elec-

trons scattered from the phosphor, is largely suppressed. Gains even as high as 108 are

possible in some configurations. Not surprisingly, modern photon counting detectors

make wide use of microchannel plate technology, whether they be incorporated into
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intensified CCD systems, attached to resistive anode arrays, or as part of the PAPA

camera.

Pulse Height Distribution

The production of secondary electrons is governed by statistical phenomena, and con-

sequently the brightness of photon events produced by the image tube may change

from one event to the next. For photon counting applications one would like to have

all photon events of the same intensity, and for that reason it is desirable to use a

microchannel plate under high gain.

When a microchannel plate is biased for low gain its pulse height distribution

resembles a negative exponential, but under high gain the space charge in the mi-

crochannels becomes saturated and the pulse height distribution exhibits a peak with

a well defined width (Slater, 1990; Leskovar, 1977). Most pulses are represented by the

same number of accelerated electrons. This permits the discrimination against noise

events, a useful feature for photon counting. Space charge saturation occurs when

there are so many electrons already in a channel that they drive other newly released

electrons back into the channel walls, limiting the available gain. Unfortunately, in

straight channel MCPs ion feedback will set in prior to space charge saturation.

At very high bias voltages, if the cloud of secondary electrons becomes dense

enough, the residual gas molecules in the channels will be ionized, including some

molecules from the walls of the channels. The positive ions are accelerated back to-

wards the input of the plate, giving rise to after-pulsing. The feedback occurs on

timescales much shorter than the decay time of the phosphor, and may result in un-

usually large pulses. If the feedback is unchecked then the image may become very

noisy and the microchannels may eventually be destroyed. The push towards higher

gain has therefore led to the development of microchannel plates with different ar-

chitectures: these include curved, chevron, and z-stacked configurations (Wiza, 1979;

Slater et al., 1990). The absence of a straight channel in these cases acts to limit the

mean free path of the ions and therefore suppresses the feedback. Curved channel

MCPs permit operation in space charge saturation mode, and are used specifically for

photon counting applications (Slater et al, 1990).

Detective Quantum Efficiency

When discussing image intensifiers the term Quantum Efficiency (QE) is used to

describe photocathode sensitivity (Csorba, 1985). The performance of the different

types of photocathodes have been reviewed by Pollehn (1980) and Csorba (1985).

The multialkalide S-20 photocathode, used in all first and second generation image

tubes, will have a peak quantum efficiency of between 10% and 15% at 550 nm. Third



3.3. DESIGN PARAMETERS 35

generation image tubes are distinguished by the different photocathode they use, a

multi-layer gallium arsenide (GaAs) compound. They are capable of much greater

quantum efficiencies, with peak QE of 25%, extending from 650 nm to 850 nm.

However, it is the Detective Quantum Efficiency (DQE) of the intensifier that

describes the system sensitivity. It accounts for losses within the image tube, as may be

produced by the presence of a microchannel plate. The MCP introduces a filling factor,

quantified by an open-area ratio. A large fraction of the electrons that are accelerated

from the photocathode impact on filled areas of the MCP. Geometrical constraints

allow only about 57% of the photoelectrons to land directly within the microchannels.

The remainder either never initiate secondaries, or are reflected to land elsewhere,

perhaps some distance from the original impact point (Pollehn, 1980). The image

transfer characteristics and the Detective Quantum Efficiency are therefore reduced.

Moreover, MCPs are frequently coated with a protective film to prevent damage to the

cathode caused by ion feedback, and this further reduces the sensitivity. Attempts to

improve the DQE of these devices have included flaring the inputs of the microchannels

to increase their open area ratio, applying a bias voltage to draw electrons into the

channels (Lampton, 1981), and removing the thin film on the input of the MCP (Airy

et al, 1990). Although unfilmed MCPs have better sensitivity, they have a reduced

life expectancy.

Image tubes and PAPA cameras

The microchannel plate is needed for its high gain and fast response time, but its

use almost halves the available quantum efficiency. With PAPA cameras only one

approach has been used to overcome this problem.

The strategy, first discussed by Papaliolios and Mertz (1982), is to employ a

hybrid combination of first and second generation intensifiers (also termed Gen I and

Gen II). It was reasoned that although the Gen I has only modest gain it would be

enough to drive the Gen II and overcome losses at the microchannel plate. The result

would be a system with a DQE approaching that of the first stage, but with the gain

of the second. In this format it would also be possible to discriminate against noise

originating in the Gen II alone, since events from the Gen I would be represented

by much larger pulses. This approach has also been used by Foy and Blazit in the

photon-counting CP40 detector (Foy, 1988), an intensified CCD camera.

It is obvious from the previous discussion that the hybrid approach is very

different from designs which attempt to optimize single stage MCP detectors for pho-

ton counting. The disadvantages of a hybrid system are common to other cascaded

arrangements: much larger voltages are required across the image tube assembly, and

the intense electric fields around each stage may cause coronal discharge if the tubes

are not correctly coupled; veiling glare, which is larger in first generation intensifiers
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(Pollehn, 1980), will be amplified by the second stage; and geometric distortion is also

possible, a fact acknowledged by Papaliolios et al. (1985). Attempts to improve the

DQE based on hybrid systems have met with mixed results. Nevertheless, Latham

(1982) reports that up to 80% of the photocathode sensitivity can be obtained. He

describes a similar strategy for use with photon-counting Reticons and outlines the

difficulties that he encountered. In the Sydney University camera, to be described

later, only a single Gen II intensifier is used.

3.3.2 Magnification tolerances

Another limiting factor in the design is the proper choice of array lenses. Their effective

focal lengths have tolerances determined by the magnification tolerances between mask

images. Let us consider an array lens and collimating lens with effective focal lengths

fa and fc respectively. When light is propagated forward in the system, from intensifier

to mask plate, an intensifier of output field diameter d will subtend an angle θ = d/fc

as viewed through the collimating lens. Therefore, after re-imaging with the array lens,

the diameter of the field on the mask plate will be faθ, or d(fa/fc). The magnification

of each field is therefore determined by the ratio of focal lengths of the array lens to

that of the collimating lens. Since the same collimating lens is used by all array lenses,

measured percentage differences in magnification from one image to another are due

to the same percentage differences in the effective focal lengths of the array lenses.

All the mask edges, when back-projected to the image intensifier should be

located appropriately to within a small fraction of a pixel. If n is the number of

masks along one axis, d is the aperture size at the image tube, then the pixel size

will be d/2n, and the allowable position error of mask edges at the image tube will be

βd/2n, where β is the (unitless) fraction of a pixel tolerated.

Now, if ξ is a coordinate at the mask plane which is normal to the direction of

the mask edges, M is the correct magnification from mask to image tube, and ε is an

error in magnification, then the following must be true across the whole image for a

proper alignment:

ξ(M + ε)− ξM < β
d

2n
. (3.1)

If the center of the field is perfectly matched then the worst-case errors will occur at

the edge of the field, where ξM = d/2, or equivalently ξ = d/(2M). Putting this value

for ξ in Eq. 3.1 we can now write:

ε

M
<

β

2n−1
. (3.2)

It follows that if 8 masks are used for 256 pixels and β = 0.2, then the focal lengths of

all the array lenses must be the same to within 0.15%. By contrast the focal lengths

of commercially supplied achromats are usually quoted with tolerances of only 1% or

2%.
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3.3.3 The field size of images

Achromatic doublets are almost precluded from use as array lenses, since they only

image well with a field radius of less than 2.5 degrees. If the output of the intensifier

has a diameter of 25 mm then the collimating lens must have a focal length greater

than 300 mm for the achromats to be useful. Even then they must be used with

field flatteners. Although there exist collimating lenses which would allow the use of

achromats, the magnification tolerances would make the achromats expensive.

If θmax is the maximum field of view of the array lenses, d is the diameter of

the field at the intensifier, and fc is the focal length of the collimating lens then we

must have

fc ≥
d

θmax
. (3.3)

Only the camera built by Papaliolios et al. (1985) used achromats and field flatteners.

For their design they used a collimating lens with an effective focal length of 285 mm.

All other cameras have used the miniature zoom lenses made by Rolyn Optics and

collimating lenses with shorter focal lengths.

3.4 Historical Background

3.4.1 Papaliolios and Mertz (1982)

The earliest version of the camera (Papaliolios and Mertz, 1982) operated with 256

x 256 pixels, or 8-bits for both x and y axes. It used two 135 mm f/2.8 telephoto

lenses (joined front to front) to image through an array of prisms, onto masks that

were attached to the prism surfaces. The telephoto lenses would have produced a

single 1:1 image had not the prisms been there; the 18 prisms each acquired a pie-slice

of the converging beam, and used that light to form 18 separate images—only 17

of the 18 prisms were used. However the prisms vignetted the converging beam and

produced images that made it impossible to correctly flat-field the camera. This design

was therefore abandoned. Nevertheless, some of the basic components, including the

Hamamatsu type R647-04 photomultipliers and the Varo model 3603 intensifier, have

been used in all other cameras.

3.4.2 Papaliolios, Nisenson, and Ebstein (1985)

A subsequent design was published several years later (Papaliolios, Nisenson, and

Ebstein, 1985) this time to be operated with 9-bit resolution, 512 x 512, with the

option of averaging to 8-bits. It performed the light division in a collimated beam,

rather than a converging beam. A 4 inch diameter f/2.8 Kodak Aero-Ektar lens was
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Papaliolios, Nisenson & Ebstein
Kodak Aero-Ektar 285 mm f/2.8

Achromats

Adaptive Optics Associates 
Kowa 90 mm f/0.95

Rolyn zoom lenses 55-60 mm

Nisenson & Standley
Isco Cinelux XENON 150 mm f/1.6

Rolyn zoom lenses 75-80 mm

Sydney University
Isco Cinelux XENON 150 mm f/1.6

Rolyn zoom lenses 75-80 mm

Figure 3.5: The lens arrays for the PAPA cameras: The large circle in each picture
bounds the effective aperture of the relevant collimating lens. In each case the
effective aperture is determined from the focal length and f number. The original
camera did not use lens arrays, and is therefore not included in this figure.
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used to collimate the light and to image through an array of achromatic doublets, with

field-flatteners located just in front of the mask. As in the previous case the mask

for each bit was made separately and aligned by physically moving it into the correct

place with respect to other masks. The Aero-Ektar lens has a focal length of 284.5

mm (11.2 inches), which is implied by its diameter and f number. The achromats

were arranged in two concentric circles about a central lens; the inner circle having

6 lenses, and the outer circle having 12 lenses, for 19 lenses in total. This packing

is shown in Fig. 3.5. The Aero-Ektar lenses were large aperture lenses used during

World War II as part of aerial surveillance cameras. After the war they were easily

obtainable, but they are now no longer manufactured.

Although this camera was successful, as illustrated by the images in the 1985

Applied Optics paper, it proved extremely difficult to align, since all masks had to

be individually positioned for rotation as well as either x or y movement. Only one

such camera was made. It is now owned by Richard Goody and Costas Papaliolios

of Harvard, and is currently operated by James Beletic for Georgia Tech Research, in

Atlanta.

3.4.3 Adaptive Optics Associates (1988)

Following the success of the 1985 camera the firm of Adaptive Optics Associates (AOA)

of Cambridge Massachusetts was contracted by Harvard to produce three more. AOA

redesigned the optics to make it easier to align, and it is this design which has been

the model for all subsequent cameras. It has been described by its user’s manual

(Adaptive Optics Associates, 1988) and in the paper by Gonsiorowski (1986). They

used a Kowa CL79 90 mm f/0.95 Ultra High Speed Lens to collimate the light from

the intensifier, and used 21 small zoom lenses packed in a square array with a central

9 in a 3 x 3 pattern, flanked on each of four sides with 3 lenses. This packing is shown

in Fig. 3.5. The effective aperture diameter for the collimating lens was slightly less

than 95 mm. They included some important changes from the previous design.

• Adjustable focal length zoom-lenses, produced by Rolyn Optics, were used as

the array lenses, rather than achromats. This made it possible to set the focal

length of the lenses to the tolerance discussed in §3.3.2. These lenses had focal

lengths adjustable in the range of 55–60 mm.

• Microlithography was used to produce all the masks on a single plate of glass.

So that for an alignment of the camera, rather than moving a mask with respect

to the image, as was done for previous alignments, the image was moved across

a mask; tilted glass plates in the converging beam of the array lenses were used

to accomplish this, as described in Appendix C.

• A combination of two image tubes were used to attempt to boost the Detective
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Quantum Efficiency (DQE) of the system from 2% to near 10% or possibly 15%,

for reasons described in §3.3.1.

Although a 10th mask was included in each dimension—of the same scale and in

quadrature with the 9th mask—only 9-bits of data were produced for each axis, and

in practice these were averaged to 8-bits. There were, however, 21 masks in total.

One of the cameras is held by Peter Nisenson at the Harvard–Smithsonian

Center for Astrophysics, while another is used in the Mark III interferometer at Mount

Wilson, as part of their angle tracking system as described by Clark et al. (1986).

3.4.4 Standley & Nisenson (1989)

In 1988 Harvard (Standley & Nisenson, 1989) undertook to produce five PAPA cam-

eras as a cooperative effort with four other institutions: Imperial College of London,

Georgia State University, Jet Propulsion Labs, and the University of Sydney. The

attempt was partly to reduce the per-unit cost, and partly to improve the shortcom-

ings of previous efforts. The cameras were essentially the same as those produced by

Adaptive Optics Associates, with a few minor changes: A 150 mm f/1.6 Isco Cinelux-

Xenon lens was used as the collimating lens, and different Rolyn zoom lenses were

used, this time having adjustable focal lengths of 75–80 mm. The same number of

lenses were used in exactly the same square array as before.

However, there were problems with this design. The Astronomy Department at

Sydney University purchased one of these cameras, and it became clear that it would

not be a useful detector without modifications to its optics. The optical problems are

illustrated in the flat field of Fig. 3.6, and in the integrated cross sections of Figs. 3.7

and 3.8. This image represents a typical flat field response of the camera. There are

obvious misalignment and vignetting artifacts in the image. It has a tartan pattern

across it caused by defocusing of the array lenses and the shifting of their positions.

Along the top and to the right are fragments of mask images, present because the

outer lenses in the array were vignetted by the collimating lens. The light was also

vignetted after the masks, before detection by the photomultiplier tubes: the field

lenses had been recessed too far into the photomultiplier housing, on a support which

blocked light from the outer edges of the field. The image is of limited extent because

of a vignetting stop at each field lens. The vignetting on the masks meant that the

camera could never be flat-fielded. The misalignment meant that the camera would

not be useful even if the vignetting were corrected.

The main problems were associated with the construction of the lens-mask as-

sembly. Some zoom lenses were not of sufficient quality to produce distortion-free im-

ages. Most had not been adjusted to within the required tolerance, making alignment

artifacts inevitable. The collimating lens did not have a large enough effective diameter



3.4. HISTORICAL BACKGROUND 41

Figure 3.6: Flat field from the camera received at Sydney University from Harvard
University. There are numerous artifacts in this image, the most visible being the
vignetting from the field lenses. The image should span the full range of addresses,
but has been truncated to a smaller circle because the field lenses were too far
away from the mask plate. Vignetting by the collimating lens is also apparent in
the corrugation features on the top right of the field, showing a folding of photon
data across the X1 mask edge. The dark vertical lines are due to misalignment
of the X1 and X2 masks.
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Figure 3.7: An integrated cross section for the x axis of the previous flat field.
All the photons that were in the image are represented here. The highest and
second-highest peaks are all due to the X5 mask. The X6 mask also causes much
smaller peaks to be present. The lowest cut into the image on this axis is due to
one edge of the X2 mask, at pixel 96. The X1 mask also cuts two edges, one near
pixel 64 and the other at 192.

Figure 3.8: An integrated cross section for the y axis of a flat field from the
same camera. Defocusing is present in this axis, and almost all masks contribute
misalignment artifacts. Most noticeable amongst these are the lower regularly
spaced cuts at the edges of the Y4 mask. The lowest is from the Y2 mask at pixel
160, and the second lowest from the Y3 mask at pixel 144.
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for the packing of the zoom-lenses, causing the masks to be vignetted. Furthermore,

the analog electronics did not have the correct electrical impedance matching, nor

shielding to eliminate noise problems. Therefore neither refocusing the image inten-

sifier nor adjustments to the discriminator settings of the electronics, would produce

improvements on the features seen in the flat field.

It was decided therefore to rebuild the camera using a different design. This

work is discussed in Chapt. 4. The reasons for the redesign are best appreciated

through an understanding of the image artifacts. These artifacts will therefore be

reviewed in detail.

3.5 Artifacts in PAPA Camera Images

The design of the PAPA camera is deceptively simple, but few working models have

been built. The design has been modified several times since the first prototype was

described by Papaliolios and Mertz (Papaliolios and Mertz, 1982). Each change has

been occasioned by optical and mechanical problems encountered in previous efforts;

vignetting, magnification tolerances, and difficulty in alignment are all problems that

have had to be surmounted. The success of these efforts is apparent from their results:

although cameras have been designed for 1024 x 1024 pixels (Gonsiorowski, 1986;

Standley and Nisenson, 1989), and it has been claimed that 4000 x 4000 resolution is

possible (Papaliolios et al., 1985), no astronomical observations have been reported in

the literature that use a PAPA camera with greater resolution than 256 x 256 pixels.

When problems occur with a camera they manifest themselves in image artifacts.

The masks are responsible for the characteristics of the artifacts. The artifacts

appear as lines along mask boundaries or as images of the masks themselves. As

errors can occur in both axes, they will often cause tartan patterns to appear. The

artifacts arise from optical or electronic faults, or from a combination of both. They

may be caused by alignment errors, defocusing of lenses, incorrect thresholding in the

electronics, vignetting of masks, and faults relating to the performance of the image

tube. This discussion will be illustrated with PAPA camera images from the rebuilt

Sydney University camera.

3.5.1 Alignment errors

Each mask defines a set of pixel boundaries. In Fig. 3.4 we see that the 7 mask

defines 128 pixel boundaries, the 6 mask defines 64 boundaries, the 5 mask defines

32 boundaries, and so on. If one mask is out of alignment then a given set of pixel

boundaries will be shifted out of place.

A mask edge determines the relative size of two adjacent pixels at the image
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Figure 3.9: Flat field with alignment errors. A circular flat field is shown which
contains alignment faults in both axes. The main faults are associated with shifts
and magnification errors in the X1, Y2, and Y3 masks. A magnification error in
the X1 mask causes only one of two mask edges to be misaligned. The complete
Gray code is shown for reference immediately above this image.
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Figure 3.10: A cross section through the x axis of a flat field. The flat field is
not truly flat, but has a circular outline that accounts for the main feature of the
cross section—the large bulge. The pixel to pixel variations are roughly ±10%
of the mean signal level. The most prominent artifact is the misalignment of one
edge of the X1 mask.

Figure 3.11: A cross section through the y axis of a flat field. This is similar to
the previous figure, except that there are more numerous alignment errors, and
possibly a defocus error towards lower values of y. The pixel-to-pixel variations
are larger than those on the x axis.
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Figure 3.12: Flat field with defocus artifacts. The image tube was moved from
the best focus location, and alignment errors are now present at almost every
mask edge, producing a very granulated image.

intensifier. If a mask edge is shifted to the right then the pixel to the left will become

larger, and the pixel on the right will become smaller; photons that would have been

detected by one pixel are erroneously detected by the other. If the shift becomes as

large as one pixel’s width then one pixel will receive all its neighbor’s photon events.

This will occur at every pixel boundary defined by that mask.

Alignment errors therefore have a characteristic appearance in the image: they

highlight the edges of the mask that has been misaligned. The pixels on one side of

an edge will be brighter than those on the other, and both sides will have a response

different from the background of the image. The width of the bright and dark lines,

measured in pixels, indicates the magnitude of the alignment error. The sequence of

bright-dark or dark-bright indicates the direction of the error: a bright line followed

by a dark line indicates that the mask is misaligned towards higher addresses. This

is illustrated in Figs. 3.9, 3.10 and 3.11, from a flat field which contains magnification

errors. If there are magnification differences between array lenses then alignment

errors will be present, but the direction of misalignment will change across the image:

some mask edges will appear shifted to lower addresses, others will appear shifted to

higher ones.

Alignment errors may arise not only because of mistakes in the alignment, but

also if either the array lenses or the collimating lens are poorly focused: a defocus will

blur the boundary of masks, making the alignment more sensitive to the discriminator
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settings (to be discussed); a defocus of the collimating lens will introduce spherical

aberration, and each array lens will then see the image tube from a slightly different

angle, causing the alignment to change. The image in Fig. 3.12 is a flat field for a

defocused image tube. Alignment errors are present at almost every mask edge.

The masks associated with the alignment errors can be identified by placing

Gray coded masks, scaled to the full image size, along each axis of the image. This

is illustrated in Fig. 3.9 for the x axis. The image artifacts will occur at the mask

edges, and those edges can easily be seen against a flat field. After the masks have

been identified then the alignment of those channels can be corrected.

Minor alignment problems can also be overcome by rounding address bits (Eb-

stein, 1987). This technique requiresm+1 and n+1 masks on each axis for a 2m by 2n

camera, with the extra Gray masks used for the averaging. Normally the finest Gray

mask defines only every second pixel boundary. However, an extra mask, representing

the next bit of Gray code, could be used to define every pixel boundary if the address

is averaged in the correct way.

Begin with m+1 Gray bits of information for addresses along the x axis. Now

convert the addresses from Gray code to binary, add 1 to them, and then throw away

the least significant bit. You are left with m bits of address information, but now

the pixel boundaries are re-defined so that they coincide with the edges of the extra

Gray mask. Because those edges are etched on a single mask, the alignment should

be perfect.

3.5.2 Discriminator setting errors

The PAPA camera electronics receive charge pulses from the photomultiplier tubes

that are converted to voltage pulses and amplified using fast low-noise op-amps. The

pulse height statistics of photon events are determined by the characteristics of the

image tubes.

The method of variable threshold discrimination has been applied in PAPA

cameras for address decoding in the presence of unfavorable pulse height distributions

(Gonsiorowski, 1984). The voltage pulses are passed to comparators whose reference is

half the height of the pulse from the clear channel, the strobe. If a voltage pulse is large

enough compared to the strobe pulse, then the level on the output of the comparator

is set high. The decision level at a comparator is set through the adjustment of a

variable resistor.

If a threshold is set too high then addresses will be biased to regions where

that address bit is off, and if it is set too low then the bias is to regions where that

address bit is on. In either case an image of that mask, either positive or negative,

will appear in the data. It can be seen in Figs. 3.13 and 3.14 that the discriminator
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Figure 3.13: Flat-field with a discriminator error in the X1 channel. Because the
threshold in the X1 channel is set far too low, 95% of all photon events are given
addresses where the X1 bit is set on, and the mask image and folding are clearly
seen. For a small error in the threshold only a faint image of the mask would be
present.

Figure 3.14: Flat-field with a discriminator error in the X2 channel. This is similar
to the previous example, but the folding of the data is now more complicated.
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errors not only produce a mask image, but also fold the original image into it, cast

back across the mask boundaries. The folding is a more subtle aspect of this artifact,

and is best understood with an example.

Note that there is symmetry of reflection in the Gray code about the center of

the image (see Fig. 3.9). All address bits but the most significant bit have the same

state at equal distances from the center. The folding is a result of this symmetry. It

implies that for an 8-bit detector if the address bit corresponding to the 0 mask is

never on, then all photons will be given addresses less than 128, and the image will

appear folded from higher address, back across the edge of the 0 mask. The folding

for other masks is more complicated.

The nature of the folding can be seen in the fractal-like geometry of the Gray

code. The state of all address bits have a symmetry of reflection about a given mask

edge. This is true for a distance of up to half a stripe width either side of that edge.

A systematic bit error therefore folds the image across the mask edges. The folds take

the data out of one bit-state of that mask and into the other.

In the absence of other errors the camera can be flat-fielded by adjusting the

discriminator settings so that the mask images and the folding disappear. This is best

done by observing the frequency that each address bit is on. If the camera were to

observe a flat field that spans all addresses, then each address bit should be on in 50%

of recorded photon events. This will be the case when the discriminators are adjusted

correctly. If the flat field is circular, rather than square, then an integration across

the mask is necessary to determine the proper thresholds. These errors involve only

a small electrical adjustment and are the easiest of all artifacts to correct.

3.5.3 Vignetting errors

Adjustments of discriminator settings have a global effect; they treat all photon events

equally, independent of their addresses. Vignetting causes an address dependent error,

and when it is present it is not possible to flat-field the camera.

Each of the array lenses should produce an exact replica of the output of the

image intensifier. If there is vignetting somewhere in the optical chain then images

on some masks will have a variable illumination across them. A photon event that

occurs in a region that is vignetted may not be detected by the photomultipliers even

if it occurred in a clear region of the mask. Vignetting in one channel therefore biases

that address bit off, but only in the parts of the field that are vignetted. This causes

an image of the mask to appear there, complete with image folding, as if there were

a field-dependent discriminator error. Surprisingly, this may occur even when the bit

statistics indicate that the discriminators are set correctly. Changing the discriminator

threshold will make different parts of the mask come into view superimposed on the
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Figure 3.15: Flat-field with a vignetting error in one mask. The discriminator
settings are adjusted correctly, but a card was placed to vignette the lower half
of the Y3 mask. It now appears as if there is a discriminator error in that part
of the image.

image, but will not alleviate the problem. Vignetting is illustrated in Fig. 3.15 where

the Y3 mask was partially shadowed.

The presence of vignetting would indicate a serious oversight in the optical

design. If vignetting errors are present, and their cause is known, then the optical

design of the camera must be suitably modified.

3.5.4 The sum of all masks

If all the aligned masks are back-projected at the same time then the image in Fig. 3.16

should be obtained. This is not a flat field, but a complicated tartan pattern. Dark

areas occur in the tartan where most address bits are off (for both x and y addresses),

and light areas occur where most address bits are on. This may appear, in whole or

in part as a positive or negative image, due to the behavior of the image intensifier.

If the gain of the image tube is too low then single photon events will produce

insufficient light to illuminate all photomultiplier tubes. Addresses will be biased to

regions where most address bits are off, and photon events will appear to cluster in

the darker regions of the tartan. The negative of Fig. 3.16 will appear in the data.
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Even if the intensifier has sufficient gain, the tartan will eventually appear in

the images as the photon count rate increases. At high light levels the response of the

microchannel plate will change; pulses that represent photon events will have a lower

average height and become severely distorted. If the intensifier has automatic bright-

ness control then it will reduce the bias of the plate before damage occurs (Pollehn,

1980). If not, then secondary electrons will be removed from the walls of the mi-

crochannels faster than they can be replaced, producing current saturation (Pollehn,

1980; Wiza, 1979). The dead-time required to replenish the electrons, determined by

the impedance across the microchannels, can be up to 2 ms long (Laprade, 1990).

With the lower pulse height distribution the discriminator settings become systemat-

ically high, and the negative of the tartan will appear. A flat field with excess light

levels is shown in Fig. 3.17.

Event coincidences may also occur at high count rates. The camera’s operation

depends on there being only one photon event on the image tube during the sampling

interval. If there is more than one event present then a composite address will be

created, where all the Gray bits that were on in the separate addresses will be on in

the composite address—the two addresses will be ANDed together optically (x and y

separately). Photon events will be biased towards regions where most Gray bits are

on, the brighter regions in Fig. 3.16. This can occur because of true event coincidences,

but also from the presence of hot spots on the intensifier—isolated points which are

on permanently.

Under high gain conditions ion feedback may be initiated in the microchannel

plate. The feedback process occurs on timescales much shorter than the decay time of

the phosphor, yielding pulses up to 150 times the average height (Pollehn, 1980). If

this changes the pulse height distribution then the tartan may also appear. However,

it may be prevented if the electronics discriminate against large pulses and temporarily

inhibit address decoding.

The sum-of-all-masks is an artifact caused by the limitations of the image tube.

The specifications of the intensifier, including the decay time of the phosphor and the

type of microchannel plate, should be chosen to optimize the dynamic range of the

camera.
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Figure 3.16: The sum of all masks. If all Gray coded masks were slightly trans-
parent and placed one on top of the other, both x and y, then this is the image
that would be produced. There are sixteen masks represented here for 8 bits of
address information along each axis. The darker regions are where most address
bits are off.

Figure 3.17: Light level problems. A much brighter flat-field was used for this
image. The response of the image tube has changed so that aspects of the sum-
of-all masks tartan are strongly superimposed here. Particularly noticeable are
bright lines at addresses where most address bits are off.



Chapter 4

The Sydney University PAPA

Camera

The design of the Sydney University camera will now be presented. Its new mask

design will be described in detail, and the mechanical design of the new lens-mask

assembly will be shown. The performance tests of the new detector are then discussed.

Photographs of the completed camera are included in Appendix A.

4.1 Guidelines for the New Design

The new camera is based on the structural design of the Standley & Nisenson camera,

which had been drafted in 1989 by Jeff Hazen at Harvard University. A complete set

of the camera blue prints were obtained from Clive Standley and used as a basis for the

rebuilding. The list of drawings is tabled in Appendix D. The main objectives were to

correct for vignetting artifacts, reset the focal lengths of all array lenses, realign the

optics of the camera, and also re-engineer and rebuild the analog electronics. Other

changes were also performed to make the system easier to use. They are summarised

below.

All major purchased components, with the exception of the mask plate, were

retained for the new design. The image intensifier, cooler, collimating lens, array

lenses, field lenses, and photomultiplier tubes were all kept.

The most important design goal was to obtain a new lens-array pattern to

bring all lenses closer together and thus guard against vignetting. The choices were

determined by purely geometrical constraints. Each of the Rolyn zoom lenses are 16.9

mm in diameter, and can be placed on centers 18 mm apart, while the large Isco lens

has an effective diameter of only 93.75 mm. Array patterns were therefore discussed

with those limitations in mind. Since there is only one pattern for 21 lenses, the one

53
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Hexagonal close-packed
19 lenses

Two concentric circles
19 lenses

Hexagonal/Square
17 lenses

Concentric/Hexagonal
17 lenses

Figure 4.1: The 19 and 17 lens array patterns that were considered. The dark and
light gray circles correspond to outliers for the 19-lens hexagonal and concentric
patterns respectively.

used in the camera, it had to be abandoned. Alternate layouts for 19 and 17 lenses

were examined.

Of concern was the magnitude of the vignetting and its orientation with respect

to the masks. The orientation is important because if a vignetted region of the image

falls entirely on an opaque part of a mask, then the vignetting does not bias the

addresses produced by the camera. However, if the vignetting crosses several mask

stripes then it will not be possible to flat field. It is therefore possible to use the

placement of the lowest order masks—masks which are largely opaque—as a shield

against address errors produced by vignetting. However, this would only be effective

with arrays that have the appropriate symmetry.

The four array patterns that were considered are shown in Fig. 4.1. The smaller

circles represent the 18 mm diameter spacing of the array lenses, and the larger circle

represents the 93.75 mm effective aperture of the main lens. There are two 19-lens
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X5X6

X7Y7

Y5Y6

Figure 4.2: The Gray coded mask plate. All the masks are shown except the
higher order masks surrounding the strobe channel. The strobe channel itself is
transparent, as indicated.

patterns, and two 17-lens patterns. The furthest lenses in the hexagonal pattern are

its 6 corners, which have been shaded dark gray. The furthest lenses in the pattern of

two concentric circles—12 lenses all equidistant from the center—have been shaded in

light gray. The two other patterns, with 17 lenses rather than 19, are combinations

of the first two patterns. In each case the furthest lenses have been shaded to reflect

the symmetry of the 19-lens patterns from which they were borrowed.

The 17 lens array that was chosen, the Hexagonal-Square pattern, has several

advantages over the others. The worst-case lenses are bunched near the x and y axes;

the two hexagonal (dark gray) outliers lie on the x axis, whereas the four concentric

(light gray) outliers are bunched close to the y axis. In every other pattern the worst-

case lenses are distributed more evenly and therefore less advantageously. Moreover,

only 6 lenses lie in locations likely to suffer from vignetting, and only two of those

are as bad as the worst-case hexagonal lenses. The hexagonal pattern also has only

6 outliers, but these are all equidistant from the center, and suffer from vignetting

equally—without the advantages of a useful symmetry.

It was thought that the few outliers and the symmetry offered by the Hexagonal-

Square pattern would offer the best chance of alleviating the vignetting problem, with
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the restriction, of course, that a 17 lens array must be adopted.

4.2 The Mask Plate

The detailed design of the new mask plate is given in Appendix B. It is also shown in

full scale in Fig. 4.2. The lower order masks have been positioned to take advantage of

the symmetry, as discussed previously. The vignetting would cause the images to have

a tapered illumination on the side of the mask nearest the center. The outer masks

are therefore oriented so that their opaque regions lie towards the strobe channel; x

masks are placed left and right, and y masks are placed top and bottom. The X0 and

X1 masks have been placed opposite each other on the central row, lying along the x

axis. The Y0, Y1, Y2, and Y3 masks have been bunched along the y axis. The Y3

mask would be the worst to suffer from vignetting, since it does not have large regions

which are solidly opaque. However, there is no evidence of vignetting in the images.

4.3 The Mechanical Design

The geometry of the new mask plate required that the lens-mask assembly and the

photomultiplier housing be redesigned. The new drawings for these components are

shown in Figs. 4.3, 4.5, and 4.4. These were based partly on the previous drawings

by Jeff Hazen, noted in Appendix D.

4.3.1 The lens-mask assembly

The array lenses were mounted on barrels and slid into a mounting plate of Fig. 4.3.

This arrangement was used so that with each lens the adjustment of focus and rotation

was independent. The rotation is required to align the image on the masks, as was

discussed in §3.2.3. As depicted in the figure, the plate allows lateral access for focus

and rotation to all lenses but the central three: the strobe and the finest x and y

masks. Those may be fixed in place without compromising the alignment; the lenses

of the two finest masks serve as the reference for the alignment of the x and y axes, and

may be fixed in place providing they are focused correctly; the rotation and focusing

of the central strobe is not crucial, as it serves only to collect light.

In the previous design the alignment had been done using tilted plates of glass,

1 mm thick, located between each array lens and its mask. The lenses were held fixed

and the tilt-plates were rotated. The tilt-plates were placed at an angle of 30◦ to the

converging beam, and allowed each image to be adjusted ±200 µm on the surface of

the mask. However, it was found that they alone did not ensure an alignment would

be possible: some of the lenses needed to be rotated as well. However, the lenses
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had been threaded into their mounts, so that rotating them caused their images to

defocus. These problems were corrected with the new design.

Now that the rotation and focus adjustments were made independent, it was

found that the tilt plates were no longer necessary, as the required range of adjustment

was available from the lenses alone. Also, because each lens was now held in place

by a screw adjustment, the mechanical stability and ease of alignment were greatly

improved.

The new mask plate, supported on three ball bearings, is held in place by the

holder depicted in Fig. 4.4. Three hex screws, cushioned by cork pads, were tightened

onto the glass directly above the ball bearings. Invar rods were used to separate the

plate holder from the lens holder of Fig. 4.3. These were attached to each piece by

screws which ran through the holders at the 0.281 inch diameter holes.

The support of the lens-mask assembly was also altered. The assembly was

brought closer to the collimating lens by shortening the main support struts of the

camera’s base. This was another measure to guard against vignetting by that lens.

Also, the mounting plate that holds the lens-mask assembly was redesigned to allow

better access to the array lenses and permit the alignment to occur in situ. With the

new mounting plate the invar rods of the assembly were in line with the support struts.

They had blocked direct access to the lenses in the previous design. The mounting

plate is shown in Fig. 4.6.

4.3.2 Mounting of the field lenses

The vignetting by the field lenses, noted in §3.4.4, was corrected as well. The lenses

were mounted in the front of the photomultiplier tube housing shown in Fig. 4.5. The

holes through to the PMTs were made larger, and the lens mounts were brought closer

to the mask plate.

4.3.3 The realignment of the optics of the camera

With the help of Derek McKay the new lens-mask assembly was optically aligned.

The Rolyn zoom lenses were removed from the previous camera, taken apart, and

cleaned. They were then mounted in the lens-mask assembly and were adjusted in

situ as described in Appendix C.
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Figure 4.3: The mount for the array of lenses. This would also have held the
tilt-plates had they been necessary.
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Figure 4.4: The support for the mask plate.
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Figure 4.5: The photomultiplier tube housing.
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Figure 4.6: The mounting plate for the lens-mask assembly. The support plate
for the mask fits into the center of this piece.
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4.4 The New Analog Electronics

The analog electronics were rebuilt to guard against electrical noise. New printed

circuit boards were designed and layed out by Hank Bennis and Derek McKay in

consultation with the author and following the suggestions by Cañas (1989). Most of

the changes were to improve the engineering. There were three printed circuit boards

in the new design: two identical yet separate x and y boards, and a strobe board.

Included were voltage regulators at each board and a ground plane on the board’s

rear surface. Miniature BNC connectors were used to connect the coaxial cables

from the photomultiplier tubes. The circuitry of the strobe board was substantially

changed.

A cooler was also designed and built by Fred Peterson to enclose the analog

electronics. The intention was not simply to cool the electronics, but to remove the

heat they generated from the enclosure of the interferometer.

4.5 Software and Computer Interface

Software was written in the C programming language to interface the camera to an

IBM AT clone. The interface board was a 32-bit parallel card, the National Instru-

ments AT-DIO-32F, capable of Direct Memory Access (DMA) and acquisition speeds

up to 450 K bytes per seconds (National, 1990). The acquisition was driven by DMA

software routines described by Nolan (1990).

The software allowed the collection of images, reading and writing data files,

and could graph cross-sectional views of the data with overlaid mask boundaries—

a useful diagnostic. It performed the calculations required to adjust discriminator

settings and could also translate images into PostScript format. All PAPA camera

images displayed in this thesis were made using this software.

4.6 Performance Tests

The performance of the camera will now be evaluated by examining its flat-field re-

sponse, resolution, sensitivity, linearity, and its noise properties.

4.6.1 Flat field

The flat field response was previously presented in the discussion of image artifacts.

It is shown in Fig. 3.9. The cross sections of Figs. 3.10 and 3.11 indicate in greater

detail the success of the alignment. The overall appearance of the flat-field is good,
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Figure 4.7: The quantum efficiency of the photocathode of the Varo Gen II inten-
sifier, Type 3036, Serial No. 907026. The open circles indicate the measurements
made by the manufacturer. The quantum efficiency is derived from measurements
of the photoresponse (mA/W), the current generated by the photocathode. This
current is measured with the front and back surfaces of the MCP shorted to
ground. The detected quantum efficiency of the image tube is therefore almost
half this value, since the open-area ratio of the MCP is only 57%. The dotted
line is 57% the response of the solid line.

with rms pixel-to-pixel variations at around 10% of the mean. This suggests that, on

average, the mask edges were aligned to within a tenth of a pixel’s width, β = 0.1.

These variations in the effective size of pixels account for most of the structure in the

flat-field.

Several larger errors are also present where the mask alignment has slipped

by more than one pixel. These are due to chromatic aberration in the zoom lenses,

resulting in a field dependent defocus. Defocusing is evident in the edge of the X1

mask, which is poorly defined: the width of the feature there will broaden according

to the discriminator threshold, and may be improved if the threshold is changed by

slightly less than 1%.

4.6.2 Detective quantum efficiency

The Detective Quantum Efficiency (DQE) of the camera is limited by the response of

the image tube’s photocathode. This is plotted in Fig. 4.7. As was discussed in §3.3.1
the DQE of the intensifier will be approximately 57% of this, limited by the open-area

ratio of the microchannel plate. If the efficiency of the rest of the camera were 80%
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Figure 4.8: A comparison between counts from the N2 photomultiplier and se-
lected pixels on the PAPA camera. The PMT measures counts from a 0.4 nm
bandpass centered on 441.6 nm. The bandpass of each pixel is the same, but
may be centered on different wavelengths. The PAPA camera response has been
scaled to include the 20:7 ratio in aperture diameters.
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Figure 4.9: An enlargement of the spectrum of α CMa as measured with the
PAPA camera software and 32-bit parallel interface. Overlaid on the histogram
are the PAPA camera data points shown in the previous figure.
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Figure 4.10: The full spectrum of α CMa with the data of April 22. The spectrum
has been scaled to fit the response of the PAPA camera measured relative to the
photomultiplier tube data. The open circles are from the same data that was
shown in the previous figures. It can be seen that in the blue, towards higher
pixel numbers, the camera has a quantum efficiency of approximately 10% of the
photomultiplier tubes. A broad absorption line is visible in the middle of the
spectrum.
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then the DQE of the system would now be estimated by the dashed line in the figure.

At a wavelength of 440 nm it would be approximately 3.5 %. Measurements on site

at the stellar interferometer indicate that the DQE is probably closer to 2.0%.

The DQE was estimated through comparisons with the sensitivity of the Photo-

Multipier Tubes (PMTs) at the Sydney University Stellar Interferometer. These are

shown in Fig. 1.1. After the light has passed through the beam combiners it is normally

sent to the N1 and N2 PMTs. However, light going to N1 was redirected to the

PAPA camera using a periscope. With this configuration the light was equally divided

between the camera and N2, so direct comparisons were possible. The camera was

used as a detector in a low dispersion spectrograph, using 430–550 nm, across 256

pixels. Red light was dispersed to low pixel numbers, and blue light to higher ones.

Each pixel represented a bandwidth of about 0.4 nm.

Observations of Sirius, α CMa, were conducted on April 22, 1993. The N2

PMT was set for a bandwidth of 0.4 nm to correspond with the bandwidth of a

single pixel on the camera. A 20 mm diameter aperture was used for the combined

beam going to the camera, and a 7 mm aperture was used for the beam going to N2.

This produced about 280 counts per second in each channel. Individual pixels on the

camera were selected for this comparison. These corresponded to different neighboring

wavelengths. The results for pixels between numbers 200 and 250 are shown in Fig.

4.8, and a spectrum of α CMa is shown in Fig. 4.9. In each of these plots the open

circles represents the same data. The spectrum was taken separately using a longer

exposure time, it is drawn as a histogram, and was rescaled to fit the data. When

the full spectrum is rescaled to the PMT response in Fig. 4.10, it can be seen that

the sensitivity varies from 10% to 20% of that of the PMT. If the PMT has a DQE

of 20% then the camera would have a response of near 2%.

On April 4 the counts across the whole camera were compared in the same

way with N2. The bandwidth of the photomultiplier tube was set at 0.75 nm and 10

mm apertures were used for both combined beams (Run Number 00015). The mean

counts were 24726 per second recorded at the camera as compared with 1038 at the

photomultiplier. The estimated quantum efficiency of the detector is then 18% of the

PMT. This is in accord with the previous measurements.

4.6.3 Resolution

The limiting resolution of the camera can be seen in the images of Figs. 4.11 and

4.12. The charts were illuminated by a red LED and imaged onto the camera with

a 230 mm focal length achromat, for a count rate of near 500k photons per second.

Slightly higher light levels were used to focus the system so that the finest lines were

visually resolved on the output of the image intensifier. Figure 4.11 shows an image

of a resolution chart, and Fig. 4.12 shows the image of a fine grid of fine lines. 97 line
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Figure 4.11: An image of a resolution chart taken at a data rate of 500k photons
per second. The finest grid was resolved by the image intensifier, but is not fully
resolved in this image. It represents line pairs where the white and dark lines each
span one pixel. The target image was intentionally tilted so that the resolved lines
would not be confused with fine scale artifacts.

pairs are resolved in this figure, indicating that at least 194 pixels are present. In each

figure there is also a moire pattern across the grids at the highest resolution, indicating

a beat between the grid pattern and the pixel dimensions. This is consistent with a

resolution approaching 256 pixels along each axis. An example image is shown in Fig.

4.14.

4.6.4 Linearity and dark count

The linearity of the camera is shown in Fig. 4.13. This measurement was done using a

set of neutral density filters from the Schott glass catalog. A red light-emitting diode

was used as a source to illuminate a white sheet of paper, which was then imaged

onto the camera, with a Hewlett Packard pulse counter used to monitor the data rate.

It can be seen from this diagram that the camera has a linear response over a large

range. At count rates higher than 1 million photons per second the sum-of-all-masks,

described in §3.5.4, begins to appear in the image. A dark count of 200 photons per

second is indicated by this graph.
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Figure 4.12: This is an image of a field of finely spaced line pairs which have been
tilted about 20 degrees from the vertical. There are 97 line pairs resolvable across
the diameter, indicating a resolution of at least 194 equivalent pixels.
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Figure 4.13: The linearity of the camera. The number of counts per second is
shown as a function of neutral density. A red LED was mounted in an enclosure
and used to illuminate a white sheet of paper, which was then imaged onto the
camera. The background counts are at a level of 200 counts per second. It can
be seen that the camera is linear over a very wide range of illuminations. High
light-level artifacts begin to be seen at count rates greater than 1 million counts
per second.
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Figure 4.14: The logo of the Sydney University Stellar Interferometer imaged
with the PAPA camera.

4.7 Summary

In Chapt. 3 the theory and operation of PAPA cameras were presented, and the

sources of image artifacts were described in detail. The Sydney University camera

was developed around a new mask plate, and was specifically designed to prevent the

occurrence of vignetting artifacts. It was shown in this chapter that the new camera

achieved that objective. Other changes that were included were a new housing for the

photomultiplier tubes, and a new mount for the array lenses. The most challenging

aspect of the optical design arose from the restrictions placed on the array lenses.

Each lens must have its effective focal length matched to better than 0.15% over the

spectral response of the image tube phosphor. They must all be mounted as close

together as possible, be independently adjusted for focus and rotation, and locked in

place after alignment. The array pattern of the mask-plate allowed the zoom lenses

to be packed within the diameter of the collimating lens while allowing lateral access

to each lens for independent adjustments of focus and rotation. This feature was a

significant improvement over the previous design because it allowed the alignment to

be performed without the use of tilt-plates.

The flat field that was depicted in Fig. 3.9 is a typically good response for

the optics of the Sydney University camera. No vignetting artifacts are visible. The

residual alignment and magnification errors are due to chromatic aberration and image
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distortion produced by the small lenses used in the array.

The camera was shown to be able to resolve at least 97 line pairs across its field,

indicating resolution on a scale of 194 pixels. The camera has a linear response for

count rates up to 1 million photons per second, and a dark count of only 200 photons

per second over a full field of 256 x 256 pixels. Although direct measurements of

detective quantum efficiency were not made, it was estimated to be near 2% at 440

nm, based on a comparative observation of stellar sources between the camera and the

photomultipliers of the stellar interferometer. This is comparable with the sensitivity

of previous PAPA cameras; a DQE of 3% was quoted by Papaliolios et al. (1985),

and a DQE of 0.5% was estimated by Mozurkewich (1993) for the Adaptive Optics

Associates camera at the Mark III interferometer. It is also comparable with other

photon counting cameras. Morgan (1988) states that an S-20 MAMA camera has a

DQE of 4%, whereas a previous model with a bialkali photocathode had a DQE of

only 0.5%.

Suggestions for future improvements to the Sydney camera are given in the

concluding chapter, Chapt. 12. In Part III we now return to the main topic of the

thesis and provide background for the experiments which are to follow.
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Theory of Group Delay Tracking
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Chapter 5

Delay Tracking with the FFT

Part III of this thesis is concerned with the theory and limitations of using the Fast

Fourier Transform for group delay tracking. It is now appropriate to review this

approach and to introduce the work that will be covered in the following chapters.

The theory precedes the experimental work which is described in Part IV.

5.1 The Channeled Spectrum

The performance of the FFT will be predicted based on the simple model of the

channeled spectrum which was introduced in Chapt. 2. Although the model provides

an optimistic estimate of the performance it is nonetheless a useful benchmark. It is

as follows:

I(λ) = Is

[

1 + |γ| cos
(
2πx

λ
− α

)]

+ Ib, (5.1)

where λ is the wavelength of light, Is is the intensity of the unmodulated stellar

spectrum, Ib is the background intensity, x is the optical pathlength difference, and γ

is the complex fringe visibility. This is identical to Eq. 2.1.

Bright fringes appear in the spectrum wherever the path difference is an integral

number of wavelengths. The number of fringes across a fixed bandwidth increases with

increasing delay, and so the path difference can be monitored by observing the number

of fringes. If n fringes are counted in the spectrum between wavelengths λmin and

λmax, then it is straightforward to determine the pathlength x. From Eq. 5.1 it can

be seen that

n =
x

λmin
− x

λmax
,

and therefore

x = n

[
1

λmin
− 1

λmax

]−1

.

The number of fringes is a linear function of the path difference.
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5.2 Periodogram Estimate of the Delay

The delay may be found by determining the frequency of the fringes measured in

units of ‘fringes per interval of 1/λ’. Figure 5.1 shows a channeled spectrum and its

corresponding Fourier transform. The spectrum is dispersed so that the fringes lie at

regular intervals in the detector coordinate. If the detector had unlimited resolution,

and was infinite in extent, then its Fourier transform would contain a dc component

and delta functions at ± the fringe frequency. In this example the spatial frequency

is the number of fringes per 256 pixels, that is to say 23.

For real valued data, such as photon counts, the positive and negative frequency

components are complex conjugates. No information is neglected if the negative fre-

quency components are ignored. Two further examples are given in Fig. 5.2 where now

only positive frequencies components are displayed. In this case a Discrete Fourier

Transform was used to identify the fringe. The detector now has a limited number of

pixels, and the fringe response is no longer a delta function. Under practical conditions

the situation is complicated even further. In general, most parameters in Eq. 5.1 will

vary with wavelength. The optical pathlength x will be wavelength dependent and

modified by the longitudinal dispersion in the two arms of the interferometer. The

spectrum and the background will have structure, and the visibility of the observed

source will change as a function of wavelength. As well, the spectrum will be repre-

sented by discrete photon events and at low light levels will be sparsely sampled. The

pathlength difference may also change during the observations and cause the visibility

of the detected fringes to be reduced.

Moreover, the process of detection alters the appearance of the fringes. The

stellar spectrum is truncated and smoothed by the pixels of the detector, and their

finite size sets the coherence length for the observation: small pixels represent narrow

bandwidths and therefore large coherence lengths. The mapping of the fringes onto

the detector, determined by the angular dispersion of the spectrometer, may also

reduce the response to large delays. The dispersion is usually defined as

Dλ =
dε

dλ
,

where ε is the angle of deviation of the light (Born and Wolf, 1980). However, in the

following discussions the term dispersion will be used to denote the change in ε as a

function of spectroscopic wavenumber, κ = 1/λ.

Dκ =
dε

dκ
,

By this definition, if ε is a linear function of wavenumber, ε(κ) = c0 + c1κ, then the

dispersion is constant and the channeled fringes will appear at regular intervals in

the detector coordinate. If the dispersion is non-constant then the spacing between

fringes will change and the fringes may be stretched or compressed.
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Figure 5.1: A model for the fringes. In this example there are 23.0 fringes with
constant spacing across the detector. The fringes have an amplitude of I0 = 50.0,
a background level Ib = 30.0, and visibility |γ| = 1.0. The Discrete Fourier
Transform shows a zero frequency level of I0 + Ib = 80, and two components at
spatial frequencies of ±23.0, each with an amplitude of I0|γ|/2 = 25.0.
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Figure 5.2: Spatial frequency response with dispersion constant in wavenumber
and a limited number of pixels. Two examples are shown of fringes, top, and their
Discrete Fourier Transform, bottom. The peak in the spatial frequency spectrum
is located at the fringe frequency. It identifies the number of fringes counted
across the detector, in this case across 256 pixels.
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All these phenomena have corresponding effects on the Fourier transform and

will be discussed in the following chapters.

5.3 Outline of Part III

Chapter 6 is concerned with how the process of detection limits the available informa-

tion in a channeled spectrum. The fringes are sampled by an array detector, whose

transfer function alters the transformed data. In §6.1 it is shown that this is caused

by the sampling and the use of a discrete transform. This section should be read with

reference to Appendix F, where the relationship between the Discrete Fourier Trans-

form and the integral Fourier transform is discussed. Sampling the fringes introduces

a coherence length, which limits the largest observable delay and sets the resolution

by which delays can be estimated. Some more obscure artifacts are examined, and the

use of zero-padding for interpolation is discussed. In §6.2 the effect of a non-constant

angular dispersion in the spectrometer is considered. This causes the fringes to be

compressed or stretched in the detector coordinate, spreading the spatial frequencies

needed to describe the fringes. The Fourier components no longer lie at a well defined

locations and the peak height is lowered at the nominal fringe frequency. It is shown

that by means of a lookup table the photon data can be rebinned to avoid losses. The

response then returns to nearly a delta function, at the expense of some noise at high

spatial frequencies.

Chapt. 7 describes the low light limitations of detecting channeled spectra. The

performance is limited by the discrete nature of the photon events which are assumed

to obey Poisson statistics. Two approaches are used to describe the signal-to-noise

ratio of the spectrum.

1. The first in §7.2 considers the squared modulus of the transform to be the

parameter of interest—the power spectrum. It provides an unbiased estimate of

fringe parameters, and its signal-to-noise ratio has been extensively reviewed in

discussions of speckle interferometry. The method of derivation is reviewed and

the results are presented.

2. The second approach in §7.3 examines the modulus of the transform as the pa-

rameter of interest. This is of importance because the modulus is integrated

in the experiments discussed in Part IV. The analysis would be the same as

that used for fringe location in radio VLBI (Very Long Baseline Interferom-

etry), but the assumption needs to be made that the noise in the transform

is Gaussian distributed—an unreasonable assumption under conditions of low

signal-to-noise. Approximations are therefore used in the second approach.

In §7.4 it is shown that there exist better performance indicators than the signal-to-
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noise ratio. The probability of tracking error is therefore derived and is compared

with predictions from theory. This is a problem related to signal-to-noise issues, but

one that has not been addressed in the literature. A figure of merit is derived for

the minimum number of frames that need to be integrated to ensure proper tracking.

This is verified using simulated data, and its importance is discussed.

In Chapt. 8 the limitations imposed by atmospheric turbulence are derived.

Path-difference fluctuations are described based on the spectral method of wave prop-

agation, and previous observations of fringe motions are presented. The visibility loss

due to fringe motion is outlined in §8.1. This introduces the concept of coherent and

incoherent integration of fringes, and thus the motivation for using power spectrum

estimates and the Fourier transform. It is shown that pathlength motions of one wave-

length will completely destroy the observed fringe, but that by recording fringe power

spectra, each taken on short time scales, the fringe amplitude can be integrated. In

§8.4 the limitations of active and passive fringe tracking are then presented.



Chapter 6

The Detector Response

The process of detection limits the information that can be obtained from a chan-

neled spectrum. The spectrum becomes smoothed and sampled by the detector: it

is smoothed across the width of each pixel and then sampled there. The averaging

reduces the visibility of a fringe that has a high spatial frequency, the sampling may

cause aliasing of the fringe frequency, and the extent of the sampled data determines

what resolution is available in the spectrum.

In this chapter the relationship between the discrete and continuous functions

will be examined. The spatial frequency response of the detector can be thought of in

terms of a transfer function. This will be illustrated by comparing the integral Fourier

transform with the Discrete Fourier Transform, in both the domain of the detector

and in the spatial frequency domain. The examples that are discussed characterise the

performance of an idealised array operating under conditions of high signal-to-noise.

Low signal-to-noise issues will be reviewed in the following chapter.

6.1 The Transfer Function of an Array Detector

The relationship between the discrete and integral transforms is described in Appendix

F, where descriptions may also be found of the Rectangle function Π(x/∆x), the Sha

function III(x/∆x), and their Fourier transforms. These functions are used in the

discussions which follow.

It will be assumed that the detector is one dimensional in the coordinate ξ, that

the spectrum is sampled by pixels of width ∆ξ, that there are a total of N pixels in

the array, and that there are no gaps between pixels. The mapping between detector

coordinate ξ and wavenumber κ would ideally be linear, but is not necessarily so.
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The sampled function

If h(ξ) represents the intensity of the spectrum incident across the detector then the

response of the array, h%(ξ), may be expressed as

h%(ξ) = Π

(
ξ

N∆ξ

)

︸ ︷︷ ︸

truncated

1

∆ξ
III

(
ξ

∆ξ

)

︸ ︷︷ ︸

sampled

[
1

∆ξ
Π

(
ξ

∆ξ

)

∗ h(ξ)
]

︸ ︷︷ ︸

filtered data

.

The term in square brackets makes explicit the averaging of the intensity due to the

finite pixel width, ∆ξ, with the asterisk ‘∗’ denoting a convolution. The Sha function

III(ξ/∆ξ) samples the averaged intensity at the pixel locations. The rectangle function

Π(ξ/N∆ξ) truncates the array so that it has a length of only N pixels.

The spatial frequency components of the sampled data

The complex spatial frequency spectrum of the sampled intensity, H%(s), is simply the

Fourier transform of h%(ξ). This represents the information available from a Discrete

Fourier Transform.

H%(s) = N∆ξ
sin(πNs∆ξ)

πNs∆ξ
︸ ︷︷ ︸

resolution

∗ III(s∆ξ)
︸ ︷︷ ︸

aliasing

∗
[
sin(πs∆ξ)

πs∆ξ
︸ ︷︷ ︸

delay envelope

H(s)

]

(6.1)

where h(ξ) and H(s) are Fourier transform pairs. The separate terms in this equation

may be interpreted as follows:

The term in square brackets represents the true spatial frequency spectrum

H(s) tapered by the transform of the pixel response—the width of the taper being

dependent upon the width of a single pixel, ∆ξ. This taper has its first null at

s = 1/∆ξ. This corresponds to the delay envelope discussed in §2.3, and sets the

coherence length for the observations. The convolution with the first sinc function

represents the finite resolution of the array, determined by the length of the series

sampled by the detector, N∆ξ. The longer the series the higher the resolution, and as

the series length approaches infinity the sinc function approaches a delta function. The

convolution with the Sha function yields a periodic repetition of the whole spectrum

along the s axis. This is due to the sampling in the ξ domain and may give rise to

aliasing.

6.1.1 Aliasing and the delay envelope of a pixel

The amount of aliasing depends both on the sampling interval ∆ξ and the highest

spatial frequency contained in the incident light h(ξ). However, the pixels spatially

filter h(ξ) and thus the relationship between this filter and the sampling period will

determine the aliasing. Consider an example.
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Figure 6.1: Aliasing and the delay envelope. The upper figure represents the delay
curve for 256 samples evenly spaced in wavenumber from 440 nm to 550 nm. The
vertical lines are halfway out to the first null and indicate the spatial frequency
where aliasing would begin. In the lower figure 128 pixels are used instead, the
bandwidth per pixel is larger, and the delay curve is therefore narrower.
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If 256 pixels with size ∆ξ are used to sample h(ξ) over a total extent of 256∆ξ,

then a Discrete Fourier Transform will yield 256 spatial frequency components between

the frequencies −1/(2∆ξ) and +1/(2∆ξ). Aliasing will occur because the pixels have

a rectangular, rather than a sinc function, bandpass. The relationship between the

rectangular bandpass and its delay envelope is as follows:

1

|∆ξ| Π
(
ξ

∆ξ

)

⇀↽
sinπs∆ξ

πs∆ξ

and therefore the highest spatial frequency components lie halfway out to the first null

of the delay curve, since the first null lies at s = 1/∆ξ. All higher frequencies will be

aliased. The sinc function is illustrated in Fig. 6.1, and aliasing is clearly seen in the

simulations of Fig. 6.2 where the detected spatial frequency shows a discontinuity, and

then a reversal. If the pixels had a sinc function profile then their Fourier transform

would be band-limited, and there would be no aliasing. However, with a rectangular

profile their transform has high frequency components well beyond the Nyquist limit.

6.1.2 The resolution in delay

Each spatial frequency sample has its own ‘coherence length.’ The DFT will not

resolve the delay in a channeled spectrum to better than 1/∆κ µm, where ∆κ is the

total bandwidth in wavenumber recorded by the array. The resolution is equal to

the sampling interval in the spatial frequency domain, 1/∆κ, and each sample will

respond to delays that are nearby and unresolved.

For instance, if a spatial frequency of m (fringes per N pixels) corresponds to a

delay of xm µm, then delays near that value will also be integrated at the same spatial

frequency. A delay of x will generate a relative contribution of

Am =
sin(π(xm − x)∆κ)
π(xm − x)∆κ

.

At x = xm the contribution is 1.0, but as x increases the contribution decreases and

then falls to zero when x = xm + 1/∆κ. That does not mean that the fringe signal

disappears, but that the delay begins to be integrated at the next spatial frequency,

m+1. As a rule of thumb therefore, the delay is integrable at a single spatial frequency

so long as the change in delay is less than 1/∆κ.

The spatial frequency where aliasing begins is dependent on the ratio of the

sample spacing to pixel size. If the pixel width is much smaller than the sample spacing

then the delay curve will be quite broad and the cut-off frequency would intersect the

delay curve high up. When the pixel size is equal to the sample spacing the cut-off

frequency lies half-way out to the first null—this is the physical layout for the array

detector being considered. Finally, if the pixels have a width twice the sample spacing,

so that the samples are overlapping, then the cut-off occurs at the first null in the

delay curve.
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Figure 6.2: The Discrete Fourier Transform of a fringe for which the dispersion
is constant across 256 pixels. The bandwidth of the spectrum is from 440 nm to
550 nm. The upper graph shows the spatial frequency of the peak as a function
of delay. The lower graph shows the peak height versus delay—the noise being
due to the picket-fence effect. This figure should be compared with Fig. 6.1.
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Figure 6.3: Averaging and zero padding to 128 pixels. The same data are used
from the previous example, but the 256 pixels were averaged to 128 and then
padded with 128 zeros. The picket-fence artifact is now reduced, but the response
to higher frequencies drops off because the data have been filtered. Aliasing also is
evident in these plots, obvious in the upper one where the spatial frequency of the
peak is folded back to lower frequencies, and in the lower where a discontinuity
in the peak height occurs. This figure should also be compared with Fig. 6.1.
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6.1.3 Zero padding the array data

If the data set is artificially extended with zero valued samples, then the spacing

between samples in the frequency domain is reduced. Zero padding the data does not

increase the resolution in the transform, since no new information is added, but it

allows the existing transform to be sampled at smaller intervals (Bergland, 1969). It

also reduces the magnitude of the picket-fence effect, discussed in Appendix F and

illustrated in Fig. F.1.

Averaging and padding with zeros

Consider a series of 256 samples. Rather than extending the data set with zeros, it may

be averaged and then padded, keeping the series length constant. This method can

be used with hardware implementations of the FFT where it is impossible to extend

the series length, such as the Austek A41102 processor discussed in Chapt. 9. The

256 pixels can be averaged so that the total number of samples is reduced to 128; each

representing two pixels and therefore a pixel width of 2∆ξ. If the data is padded with

128 zeros then the series lengths comes back up to 256 samples. A 256-point transform

then yields 256 spatial frequency components between the frequencies −1/(4∆ξ) and
1/(4∆ξ). The width of the delay curve is narrowed because of the averaging, and the

highest frequency component still lies halfway out to the first null (since the ratio of

pixel size to sample spacing has remained constant), but now the transform is sampled

at half the spacing of what it was previously.

If it were averaged further then 64 samples could be formed each representing

four pixels; this could then be padded with zeros so a 256-point transform could

again be used. The transform would then yield 256 samples between frequencies of

−1/(8∆ξ) and 1/(8∆ξ), with the highest frequency component still halfway out to

the first null.
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6.2 Visibility Loss Due to Non-Constant Dispersion

The channeled spectrum will have bright fringes wherever the optical path difference

is an integer number of wavelengths, x = mλ. The number of fringes that appear

across a fixed bandwidth is always linearly proportional to the delay, but the mapping

from wavenumber to detector coordinate need not be. Using our simple model for the

fringes we would write

I(κ) = Is

[

1 + |γ| cos (2πxκ+ φγ)

]

+ Ib, (6.2)

and to process this information we need to know the mapping from wavenumber to

detector coordinate.

κ −→ ξ.

The examples in the previous section have illustrated fringes that were regularly spaced

across the detector. However, most spectrometers would compress or stretch the fringe

spacing. This effect is also due to the detector system, and its consequences will now

be examined.

6.2.1 Linear mapping

If wavenumber is mapped linearly onto the detector coordinates,

κ = c0ξ

then it is straightforward to describe the sampled and transformed data, ignoring for

the moment most DFT artifacts. If, as before, the detector has N pixels of width ∆ξ,

and wavelengths from λmin to λmax mapped onto it, then we have

∆ξ =
1

Nc0

[
1

λmin
− 1

λmax

]

, or ∆ξ =
∆κ

Nc0
,

where ∆κ is the corresponding interval in wavenumber between λmin and λmax.

∆κ =
1

λmin
− 1

λmax
.

The samples therefore lie at intervals of wavenumber given by

κn = κmin + nc0∆ξ, n = 0, 1, ..., N.

The transform determines the spatial frequency of the fringes detected across the

array, that is to say m fringes per N pixels. We have therefore x = m/∆κ,

xm =
m

Nc0∆ξ
, m = 0, 1, ..., N/2.

and m is an index of spatial frequency. Using the expressions for κn and xm we have

xκ =
nm

N
+
mκmin
∆κ

. (6.3)
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Inserting Eq. 6.3 into 6.2 yields

I(n) = Is

[

1 + |γ| cos
(
2πm0n

N
+ φ

)]

+ Ib, (6.4)

where

φ =
2πmκmin

∆κ
+ φγ .

The Discrete Fourier Transform of the channeled spectrum would be

I(m) =
N−1∑

n=0

I(n) exp

[

j
2πmn

N

]

,

whose real and imaginary parts are

Re[I(m)] =
N−1∑

n=0

I(n) cos

(
2πmn

N

)

=







N(Is + Ib) s = 0

N(Is|γ|/2) cosφ m = m0

0 else

and

Im[I(m)] =
N−1∑

n=0

I(n) sin

(
2πmn

N

)

=

{

N(Is|γ|/2) sinφ m = m0

0 else

The features at ±m0 are not truly delta functions, but sinc functions whose nulls lie

at the locations of the other samples in the spatial frequency domain. Examples of

this transform were shown in Fig. 5.2. The peak position is linearly related to the

delay, and is obvious from an inspection of the transform. Unfortunately, under most

circumstances the mapping would not be linear.

6.2.2 Non-linear mapping

Most spectrometers use either a prism or a grating, neither of which have disper-

sions that are constant in κ. Consequently the distance between fringes will change

throughout the detected spectrum, and the fringes will be partly stretched or com-

pressed. This ‘chirp’ means that although the number of fringes would be the same, the

associated frequency is more difficult to identify. The Fourier transform yields a fringe

frequency, not a number-of-fringes. The transform is no longer a delta function—the

peak is broadened and its height is reduced. For instance, if the spacing between

fringes doubles from one edge of the detector to the other, then the peak would be

spread between these two frequencies. This effect is illustrated in Figs. 6.4 and 6.5.

In these examples the same simulation was used as in Fig. 5.2, but the dispersion is

now non-constant. It is obvious that the signal has become significantly eroded. This

effect is more severe the more fringes are present: at larger path differences the peak

becomes progressively broader and lower in height. It becomes more difficult to detect

the peak in the presence of noise, and the broadening means that the peak is less well

defined. Some method of interpolation or remapping is therefore required to overcome

these losses.
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Figure 6.4: Spatial frequency response with non-constant dispersion. In this
example the fringe spacing almost doubles from one side of the detector to the
other. The change in fringe period across the detector causes a spread in the
frequency components in its Discrete Fourier Transform. In comparison with Fig.
5.2 it is obvious that the shape of the peak has become broader and that its peak
location is more difficult to identify.



90 CHAPTER 6. THE DETECTOR RESPONSE

Figure 6.5: The peak height and location in the power spectrum with no re-
binning. This figure should be compared with Fig. 6.2. The example is for
the amplitude of the fringe, and no bias subtraction. The dispersion is that of
the SF52 prism, with parameters of the spectrometer as discussed in Appendix
E. The simulations model single frames of Poisson distributed data with 10000
photons-per-frame over 256 pixels, visibility of 1.0, and zero background. The
signal height loses half its amplitude at a delay of about 30 µm. The increased
spread in the peak can be seen from the fan-out in the graph of peak location; as
the delay increases, the rms tracking error increases as well.
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6.2.3 Grism spectrometer

This problem has motivated the IOTA group, at the Harvard-Smithsonian Center for

Astrophysics, to design a spectrometer with a constant dispersion (Traub, 1990). It

uses a combination of grating and prism, and has been called a grism. A prism dis-

perses more in the blue, and a grating more in the red; thus a suitable combination of

the two could yield roughly constant dispersion across the wavelength band of inter-

est. The number of grooves per mm in the grating, the major and minor facet angles,

and prism glass, must all be chosen to optimize the optical transmission in the m = 1

order. Although Traub lists glass and grating combinations, many of the gratings are

non-standard because of his suggestions for the facet angles. It would require a sep-

arate program of research to develop such a device for the Sydney University Stellar

Interferometer, and for that reason it was not considered for the current project.

6.2.4 Gridding, remapping, and interpolation

The concept of gridding data is well known in radio interferometry, where a large

number of measurements are made in the Fourier plane, but at irregular intervals.

For efficient processing it is necessary to re-sample the data at regular intervals. The

DFT can then be used and implemented with an FFT.

The gridding is accomplished by weighing the data to improve the synthesised

antenna beam, and then convolving with an appropriate function to allow sampling

at the grid positions. These techniques are discussed by Thompson and Bracewell

(1974), Justice et al. (1985), Thompson et al. (1986), and Perley et al. (1989). This

method is computer intensive, is always performed after the data have been recorded,

and never as part of a real-time servo loop.

6.2.5 Power spectra with non uniform sample spacing

It is also possible to determine power spectra from data sampled at uneven intervals,

but one must then abandon the speed of the Fast Fourier Transform.

The most obvious method is to use a Direct Fourier Transform. This uses the

samples at their uneven spacings and applies a discrete transform. The resolution,

or transfer function, is then the Fourier transform of the sampling function. It may

contain high sidelobes, depending on the frequency and spacing of the samples (Yen,

1956). It would require equivalent processing time to a brute force method of cal-

culating the DFT. More efficient methods have been developed which use the FFT

in non-standard ways (Press et al., 1992, §13.8). However, such methods are still

computer intensive.
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6.2.6 Rebinning of data

For real time processing it is simplest to rebin the data, as this requires no mathemat-

ical computations. Neither convolution nor higher order interpolation is attractive,

because of the limited amount of data processing time. The rebinning re-arranges the

samples, moving them to new locations with reference to a lookup table. No arith-

metic is performed—the data are simply rearranged and not convolved with other

data.

The look-up table

The spectrum is first split up into new pixels whose boundaries lie at even intervals

in wavenumber, κ. The central wavenumber of each old pixel determines which new

pixel it will be mapped to, which can be tabulated in advance and stored in a lookup

table. Photon events are then rebinned upon arrival—prior to the calculation of the

power spectrum.

The detector response is, of course, altered by the remapping. Stretching the

data without interpolation means that some of the remapped pixels will always be

empty, and compressing it means that some pixels may have twice the counts they

had previously. An example of this is shown in Fig. 6.6.

Simulated remapping response

Simulations of remapped data are shown in Fig. 6.7. This represents the same sim-

ulation as in Fig. 6.5, but with the data rebinned using a lookup table. The sharp

spikes and gaps in the data arise from the new detector response, which in the Fourier

domain show up as noise at high spatial frequencies. The improvements from rebin-

ning are dramatic: the peak is now sharpened and its height has increased to near

maximum. This is more clearly demonstrated in Fig. 6.8 where the peak height and

delay location are plotted as a function of delay.
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Figure 6.6: The detector response after the data have been rebinned. Here the
rebinning is from 256 to 256 pixels. Notice that some of the pixels now have zero
response, whereas others have twice what they had previously. In some regions
the data have been stretched, and in others they have been compressed.
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Figure 6.7: Spatial frequency spectrum after remapping for dispersion. Two sets
of fringes are shown here, above, with their power spectrum, below. The fringe
frequencies are the same as in Fig. 6.4, but have been remapped prior to the
Discrete Fourier Transform. The improvement in the peak response is dramatic,
bringing it up to half the dc level, where it would be if the dispersion had been
constant in wavenumber, as in Fig. 5.2. The remapping causes some pixels to
have twice the amplitude, creating sharp features in the data and giving rise to
high frequency features in the spectrum.
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Figure 6.8: The peak height and location in the power spectrum after rebinning
the data so it is mapped linear in wavenumber. The same parameters were used
as in Fig. 6.5, but in this case remapping is used. The signal strength has now
increased noticeably, and the ‘picket-fence effect’ is even visible in the spectrum—
a clear sign that the rebinning is working well.
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6.3 Conclusion

This chapter has discussed how an array detector would transform the information

that could be obtained from a channeled spectrum. It was shown that the transfer

function is set by the pixel width ∆ξ and the length of the array, N∆ξ. The pixel

size determines the resolution in an image, and in the case of channeled spectra it

determines the largest path difference that can be observed: increasing the pathlength

difference brings the fringes closer together, and when the fringe spacing approaches

the pixel size the fringe visibility drops to zero. If the total bandwidth across the

detector is ∆κ, where κ = 1/λ, and if the dispersion is constant then the resolution in

delay is 1/∆κ. A bandwidth of ∆λ=100 nm, centered at 450 nm, therefore yields a

resolution of 2.0 µm in delay. If the length of the data set is doubled by zero padding

then the resolution is not improved, but the delay can then be sampled at intervals of

1.0 µm.

In the spatial frequency domain the delay is represented by a peak at the fringe

frequency. It was shown that if the dispersion of the spectrometer is non-constant then

the peak will be broadened and reduced in height. This effect is more pronounced at

larger delays since the fringes become spread over more and more spatial frequencies.

However, it was shown that if the data is properly rebinned prior to the FFT then

the response will be almost as if the dispersion had been constant.



Chapter 7

Fringe Detection at Low Light

Levels

A photon counting camera detects the channeled spectrum as an array of photon

counts that have been summed over a given interval. At low light levels there may be

far fewer photon events than pixels, and photon-starved conditions are said to exist

when there is less than one photon per spectral channel, per coherent integration time

τ , per coherence region r0 (Shao and Colavita, 1992). This is illustrated in Fig. 7.1. It

is apparent that at low light levels the model of Eq. 5.1 does not adequately represent

the data: the counts are discrete random events, are different in each interval, and are

best described by their statistical behavior.

In this chapter the low light limitations of group delay tracking will be deter-

mined from the statistics of the photon counts. The limitations of power spectrum

estimates using the DFT has been extensively studied for use in speckle interferometry

and is reviewed in §7.2. The unbiased estimate of the power spectrum will be derived

and the signal-to-noise ratio will be given.

The signal-to-noise ratio of the modulus of the transform, rather than its mod-

ulus squared, is reviewed in §7.3. This has been largely neglected in stellar interfer-

ometry because an unbiased estimate for the modulus does not exist. Nevertheless,

it has been studied by Walkup and Goodman (1973) using Rician statistics. These

statistics were originally derived for communications theory to describe the probabil-

ity distribution of the envelope of a noisy sine wave (Rice, 1948), and are also used in

the analysis of fringe finding in radio VLBI observations (Thompson et al. 1986). The

modulus is of interest here because it is estimated by the data processing described

in Chapt. 9 and is used in the experiments of Part IV of this thesis.

The probability of error in tracking is discussed in §7.4, and is the principal

result of this chapter. A figure of merit is derived based on the signal-to-noise pre-

dictions, and simulations are used to verify the result. Finally, the extreme low light

97
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Figure 7.1: Examples of photon rich and photon starved data, showing a data
set and the amplitude of its Discrete Fourier Transform. The data set on the left
represents about 750 photons. The data set on the right has roughly 60 photons.
The fringe frequency in each example is the same, but the noise in the photon
starved case is significantly larger.
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level failure of DFT estimates is described in §7.5, and the method of q-clipping is

suggested to improve the performance.

The only published discussions of the signal-to-noise characteristics of group

delay tracking have been those of Shao et al. (1988), and Colavita and Shao (1987).

They attribute to it the same performance as that of the visibility squared estimates

discussed by Tango and Twiss (1980). In their discussion each spectral channel con-

tributes an independent estimate of |γ|2, which is not the case for power spectrum

estimates of channeled spectra that are examined in this chapter—in which all spectral

channels contribute to frames within one coherence time, τ . Their interpretation of

the number of photons-per-frame and what constitutes a frame is therefore different.

7.1 The Channeled Spectrum with Photon Noise

It will be assumed that the counts obey Poisson statistics, whose higher moments are

listed by Tango and Twiss (1980). For high count rates the probability distribution

approaches a Gaussian with the same mean and standard deviation, but for low count

rates (less than 10 photons per pixel on average) the distribution is asymmetrical.

On the array detector the average counts at any element n would be propor-

tional to the amount of light received there. We may rewrite Eq. 5.1 as follows

k̄(n) = ks

[

1 + |γ| cos
(
2πns0
N

+ φ

)]

+ kb, (7.1)

where k(n) is the photon count at the nth pixel, ks is a constant determined by the

amount of light passing through the apertures, the optical efficiency of the interfer-

ometer, the area of a single array element, the integration time, and the quantum

efficiency of the detector. |γ| is the fringe visibility, s0 is the fringe frequency, φ is its

phase, N is the total number of elements in the detector, and kb is the level of the

background counts.

Walkup and Goodman (1973) take the Discrete Fourier Transform of Eq. 7.1

and separate it into its real and imaginary parts, KR(s) and KI(s). They then examine

the statistics of each part separately. Using the fringe model of Eq. 7.1 it is easy to

show that the mean values of the real and imaginary parts are

K̄R(s) =
N−1∑

n=0

k̄(n) cos

(
2πns

N

)

=







N(ks + kb) s = 0

N(ks|γ|/2) cosφ s = s0

0 else

K̄I(s) =
N−1∑

n=0

k̄(n) sin

(
2πns

N

)

=

{

N(ks|γ|/2) sinφ s = s0

0 else

The factor of 1/2 appears in the calculation because both positive and negative fre-

quency components exist.
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7.2 The DFT Power Spectrum Signal-to-Noise Ratio

Although Walkup and Goodman (1973) use the fringe amplitude as their estimator,

discussed in §7.3, they continue their arguments by deriving the variance of KR and

KI. This derivation closely follows that of Goodman (1984), but is more general in its

scope and results in an expression for the photon bias. The signal-to-noise ratio for

the power spectrum is then shown. Let us begin by noting that for Poisson deviates

k2(n) = k(n)2 + k(n) (7.2)

k(n) k(m) = k(n) k(m), m 6= n (7.3)

and that the real part of the Fourier transform (squared) can be written as

K2R(s) =

[
N−1∑

n=0

k(n) cos
2πns

N

]2

=
N−1∑

n=0

N−1∑

m=0

k(n) k(m) cos
2πns

N
cos

2πms

N
.

The mean squared value can then be found as follows

K2R(s) =
N−1∑

n=0

N−1∑

m=0

k(n) k(m) cos
2πns

N
cos

2πms

N

=

[
N−1∑

n=0

k(n) cos
2πns

N

]2

+
N−1∑

n=0

[

k2(n)− k̄2(n)
]

cos2
2πns

N
(7.4)

where we have used Eq. 7.3 to separate terms n = m, and n 6= m. If we now insert

Eq. 7.2 into 7.4 and use the identity cos2 θ = (1 + cos 2θ)/2 we have

K2R(s) =

[
N−1∑

n=0

k(n) cos
2πns

N

]2

+
N−1∑

n=0

k(n) cos2
2πns

N

=

[
N−1∑

n=0

k(n) cos
2πns

N

]2

+
1

2

N−1∑

n=0

k(n)

+
1

2

N−1∑

n=0

k(n) cos
2πn(2s)

N
(7.5)

The variance is therefore

σ2R(s) =
1

2

N−1∑

n=0

k(n) +
1

2

N−1∑

n=0

k(n) cos
2πn(2s)

N

In a similar manner we can derive the expression for K2I (s) but use the identity sin2 θ =

(1− cos 2θ)/2 and write

K2I (s) =
[
N−1∑

n=0

k(n) sin
2πns

N

]2

+
1

2

N−1∑

n=0

k(n)

− 1

2

N−1∑

n=0

k(n) cos
2πn(2s)

N
(7.6)
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with

σ2I (s) =
1

2

N−1∑

n=0

k(n)− 1

2

N−1∑

n=0

k(n) cos
2πn(2s)

N

In general the real and imaginary parts of the discrete Fourier transform have differ-

ence variances. In each case the first term in the variance is a bias dependent upon

the total number of photons, and the second term samples the DFT at the second

harmonic of the spatial frequency under consideration. Walkup and Goodman (1973)

and Goodman (1984) show that using the fringe model of Eq. 7.1 the second term is

identically zero, and therefore both KR and KI have equal variances. Their discussion
then follows the thread picked up again in §7.3, but let us continue our calculations.

Photon noise and the mean value of the periodogram

Using Eqs. 7.5 and 7.6 the mean value of the periodogram estimate can be written as

〈K2R(s) +K2I (s)〉 =
[
N−1∑

n=0

k(n) cos
2πns

N

]2

+

[
N−1∑

n=0

k(n) sin
2πns

N

]2

+
N−1∑

n=0

k(n) (7.7)

The last term is a noise bias which is independent of s and is therefore present at all

spatial frequencies. It is simply the average number of photons counted across the

detector,

N t =
N−1∑

n=0

k(n).

It is common practice in speckle interferometry to use an unbiased estimator for the

power spectrum, so that the image may be accurately reconstructed (Dainty and

Greenaway, 1979; Dainty, 1984). The bias is easily predicted and can be subtracted

from the mean to yield an unbiased estimator for the periodogram:

Q(s) = 〈K2R(s) +K2I (s)〉 −
N−1∑

n=0

k(n), (7.8)

The difference between biased and unbiased power spectrum estimates in shown in

the accompanying figures. Fig. 7.2 shows how the subtraction of the bias alters a

single power spectrum, and Fig. 7.3 shows its effect when power spectra are summed

together. The subtraction removes the noise floor, giving the noise a zero mean value,

but does not alter the structure in the spectrum—the differences in height between

the noise peaks and signal peak remain the same. It is interesting to note therefore

that bias subtraction would serve no useful purpose in group delay tracking.
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Figure 7.2: Biased and unbiased estimates of squared-amplitude. In the above
examples there are 18 photons-per-frame, and one frame only. The exact same
simulation is used in each case, except that the lower figure has the photon noise
bias removed. If unbiased estimates are used then the noise will average to a zero
mean when a large number of frames are integrated.
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Figure 7.3: Integrated biased and unbiased estimates of squared-amplitude. Here
we have simulations with an average of 3 photons-per-frame, and an integration of
100 frames. Once more the same simulations are used in each case, but the lower
figure has the noise bias subtracted from each frame prior to it being summed
with the others.
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Higher order statistics of the periodogram

The effect of photon noise on speckle images was originally studied in a suite of papers

by Goodman and Belsher (1976a, 1976b, 1977). Roddier (1986) reviews the derivation

in his comparison between pupil-plane and image-plane interferometry. His paper is

useful for a table which lists the terms used in Goodman and Belsher’s work. A

more compact and readable discussion, based on Roddier’s review, is contained in a

recent paper by Beletic and Goody (1992). The same signal-to-noise study is also

contained in papers by Ayers, Northcott, and Dainty (1988), and Kulkarni, Prasad,

and Nakajima (1991) as a preliminary to discussions of bispectrum imaging.

Beletic and Goody (1992) treat a special case of the signal-to-noise calculations

performed by Roddier (1986), and their derivation will now be outlined. The notation

is based on that used by Goodman and Belsher (1976).

D(s) =
N−1∑

n=0

k(n) exp

[

−j 2πns
N

]

,

Λ(s) =
N−1∑

n=0

k̄(n) exp

[

−j 2πns
N

]

.

The samples, k(n), are assumed to be so sparsely distributed that the data are an array

of delta functions, each delta function locating the position of one photon event. An

integral transform is then applied to mimic the DFT. The power spectrum estimate

is nevertheless identical to Eq. 7.8,

Q(s) = |D(s)|2 −Nt,

〈Q(s)〉 = |Λ(s)|2 .

The signal-to-noise ratio is defined as the mean value of Q(s) over its rms value

SNR(s) =
〈Q(s)〉
σ[Q(s)]

,

where we have

σ2[Q(s)] = 〈Q2(s)〉 − 〈Q(s)〉2

= 〈Q2(s)〉 − |Λ(s)|4 .

and

〈Q2(s)〉 = 〈|D(s)|4〉 − 2〈Nt|D(s)|2〉+ 〈N2
t 〉

The most difficult part of the subsequent calculations is the evaluation of 〈|D(s)|4〉.
The method of attacking this problem is attributed to Goodman and Belsher (1976)

and is summarised by Roddier (1986).
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Figure 7.4: Signal-to-noise ratio for integrated frames of unbiased power spectrum
estimates. It is assumed that the visibility is 1.0 and there are no background
counts. The upper and lower diagrams present the same information, but ex-
pressed differently. The lower figure shows the number of frames required to
maintain the signal-to-noise level constant, plotted for several different values of
the SNR.
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The mean value of |D(s)|4

|D(s)|4 =

[
N−1∑

n=0

k(n) exp {−j2πns/N}
]

×
[
N−1∑

m=0

k(m) exp {j2πms/N}
]

×




N−1∑

p=0

k(p) exp {−j2πps/N}


×




N−1∑

q=0

k(q) exp {j2πqs/N}




|D(s)|4 =
N−1∑

n=0

N−1∑

m=0

N−1∑

p=0

N−1∑

q=0

k(n) k(m) k(p) k(q) exp {−j2π[(n−m) + (p− q)]s/N}

The N4 terms in this summation can be divided up into 15 groups, evaluated in Table

1 of the appendix of Roddier (1986). The result is

σ2[Q(s)] = N2 + 2N |Λ(s)|2 + |Λ(2s)|2

+2Re[Λ(2s) Λ∗(s) Λ∗(s)].

If we ignore the presence of the half-frequency components, assuming |Λ(2s)| = 0,

then we arrive at

SNR(s) =
|Λ(s)|2

[
N̄2
t + 2N̄t |Λ(s)|2

]1/2

Now, including the fringe model and assuming there is zero background count, we

set |Λ| = Nt|γ|/2. Furthermore, if we integrate M frames of data we get a
√
M

improvement in signal-to-noise. We have then

SNR(s) =
1

4
M1/2 Nt|γ|2

[

1 + 1
2 Nt|γ|2

]1/2
, where M =

(
T

τ

)

. (7.9)

T is the total integration time and τ is the allowed time for coherent integration of the

fringes. This is the principal result of this section and is plotted in Fig. 7.4. It is, of

course, the signal-to-noise ratio for delay tracking when using a DFT power spectrum

estimate.

Comparison with V 2 signal-to-noise ratio

Shao et al. (1988) quote Tango and Twiss (1980) and state that for group delay

tracking the signal-to-noise ratio for visibility squared estimates is

SNR(V 2) =
1

4
M1/2 Nf |γ|2

[

1 + 1
2 Nf |γ|2

]1/2
.

whereM is defined differently than before. It is now the number of separate coherence

regions where photons have been gathered, and Nf is the number of photons gathered
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per region. These regions include aperture area, integration time, and the number of

spectral channels.

M =

(
D

r0

)2 (T

τ

)(
BW

∆λ

)

The aperture of diameter D is subdivided into r0 sized regions that are processed

separately, and the total bandwidth BW is subdivided into channels of width ∆λ, also

processed separately. The only difference between this estimate and the one derived in

this section, Eq. 7.9, is the way in which information in the separate spectral channels

is processed.

7.3 The DFT Modulus Signal-to-Noise Ratio

If the estimator is now the amplitude of the Discrete Fourier Transform, rather than

its amplitude squared, then the statistics are somewhat different. This has been

reviewed by Thompson et al. (1986, §9.3) for analysis of VLBI fringe detection, but

for the moment let us follow our previous discussion following Walkup and Goodman

(1973). They use as their estimator the amplitude of the DFT,

Ĉ = [KR(s)2 +KI(s)2]1/2,

and examine it by analogy with a similar problem: the statistical properties of a sine

wave plus random noise, exhaustively treated by S. O. Rice (1948). His paper served

as an extension of an earlier monograph on the mathematical analysis of random noise,

which he published in two parts (Rice, 1944; Rice 1945), and which has been published

together in a volume of selected reprints, edited by N. Wax (1954).

The Rician distribution

In his analysis Rice looked at electrical signals of the form

r(t) = |Λ| cos(ωct+ θ) + n(t),

where the amplitude |Λ| and the frequency ωc of the carrier are known a priori. The

phase θ varies randomly and the envelope is described by two quadrature components

with mean amplitudes |Λ| cos θ and |Λ| sin θ, both Gaussian distributed with identical

variances of σ2. He showed (see N. Wax ed., 1954, pp. 236–245) that the envelope

has a probability density function described by

p(Z) =
Z

σ2
exp

[

− 1

2σ2
(Z2 + |Λ|2)

]

I0

( |Λ|Z
σ2

)

, Z > 0. (7.10)

Where I0(x) is the modified Bessel function of order zero. This has been called

the Rician distribution, or the generalized Rayleigh distribution. In the limit as |Λ|
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approaches zero the two distributions are identical.

p(Z) =
Z

σ2
exp

[

− Z2

2σ2

]

, |Λ| = 0, Z > 0. (7.11)

Walkup and Goodman (1973) argued that the complex DFT may be regarded

as the sum of a signal phasor having quadrature components K̄R(s) and K̄I(s), plus
a noise phasor ρ(s). If this analogy is to apply it must be assumed that the quadra-

ture components of the noise phasor are independent, zero mean Gaussian variates,

with common variance σ2, and for this to be true the signal-to-noise ratio must be

much greater than 1. However, they state that simulations yield results that are still

satisfactory for data sets with as few as 30 photons.

When the assumptions are valid the length of the noise phasor will obey a

Rayleigh probability-density function (|Λ| = 0) and its phase will be uniformly dis-

tributed on (−π,π). The resultant signal-plus-noise then has Rician statistics (|Λ| 6= 0)

whose moments may be written

〈Zn〉 = (2σ2)n/2Γ

(
n

2
+ 1

)

1F1

(

−n
2
; 1;−ρ

)

where ρ = |Λ|2/2σ2 is the signal-to-noise ratio, Γ(x) is the Gamma function and

1F1(a; b;x) is a hypergeometric function given by

1F1(a; b;x) = 1 +
a

b

x

1!
+
a

b

(a+ 1)

(b+ 1)

x2

2!
+
a

b

(a+ 1)

(b+ 1)

(a+ 2)

(b+ 2)

x3

3!
+ ...

The mean and mean-squared values of this distribution (Rice 1948, eq. 3.14) as well

as its fourth moment (Thompson, 1986, eq. 9.41) are as follows

〈Z〉 = e−ρ/2
(

πσ2

2

)1/2

[(1 + ρ) I0(ρ/2) + ρI1(ρ/2)] (7.12)

〈Z2〉 = |Λ|2 + 2σ2

〈Z4〉 = |Λ|4 + 8σ2|Λ|2 + 8σ4

The moments of the Rayleigh distribution can be found by inserting |Λ| = 0 into the

above equations.

It should be remembered that we derived an exact expression for the mean-

squared amplitude of the periodogram, Eq. 7.7. It is the mean value 〈|D(s)|〉 that
would be the primary result of this analogy. It is a biased estimate of the fringe

amplitude |Λ|, and there is no obvious method of constructing an unbiased estimator,

as was possible with the power spectrum.
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Fringe amplitude signal-to-noise

At this stage Walkup and Goodman sidestep the problem and only consider conditions

of high signal-to-noise. Their expression for fringe amplitude SNR is not the mean

signal height over its rms value, but an approximation. They also choose as their

estimator twice the amplitude of the fringe, and so get a 21/2 improvement over what

could be expected. It is now possible to write the SNR for group delay tracking which

uses DFT modulus estimates. They reason that when the SNR is high the mean of

the DFT and its variance can be written as

〈|D(s0)|〉 ' |Λ(s0)|,
Var [|D(s0)|] = 2σ2.

The analogy with our fringe model, 7.1, leads to the following:

|Λ(s0)| = |γ| Nks
2
,

2σ2 = Nt = N(ks + kb).

where N is the total number of pixels in the array, ks and kb are the average number

of signal and background counts per pixel respectively, and |γ| is the visibility of the

fringe. We have therefore

SNR = ρ1/2 =

[

N ks |γ|2
4

(
ks

ks + kb

)]1/2

. (7.13)

Their estimate compares the mean height of the signal to the mean level of its

own noise bias. If you assume that 〈Z〉 ' |Λ|, then with the second moment of the

Rician distribution we have

〈Z〉
〈Z2〉 − 〈Z〉2 =

|Λ|√
Nt
.

If there are zero background counts, kb = 0, then Nks = Nt and Eq. 7.13 reduces to

SNR = ρ1/2 =

[

Nt |γ|2
4

]1/2

This is the principal result of this section, but for tracking we require another figure

of merit.
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7.4 The Probability of Error in Tracking

The signal-to-noise ratio does not tell the full story. What is needed is a means of

predicting tracking success. A more useful parameter, calculated by Thompson et al.

(1986), is the probability that one or more noise peaks will exceed the amplitude of

the signal. For this calculation one needs to know the distribution of the signal and

noise. A similar problem, that of the detection of images immersed in speckle noise,

is treated by Dainty (1971).

The ability to locate a fringe in integrated data depends on the difference

between the signal height and the mean noise level. Averaging the data over a long

time will reduce rms fluctuations in each, but will not increase their separation. Let

us consider visibility squared estimates. If m frames of data are averaged then the

mean value remains the same, but the variance is reduced. The integrated signal,

lying at s = s0, can be described by the probability distribution Ps(Z) which has the

following features.

Z̄s = |Λ(s0)|2, (7.14)

σ2s =
1

m

[

N2
t + 2Nt|Λ(s0)|2

]

. (7.15)

Similarly, the distribution of noise, where |Λ(s)| = 0, can be described by a distribution

Pn(Z) with

Z̄n = 0, (7.16)

σ2n =
1

m
N2
t . (7.17)

The exact calculation of the probability of error form frames would pre-suppose

a knowledge of the probability density function for a single frame. The brute-force

method would then derive the joint-probability distribution using an m dimensional

integration, where each integral was a convolution calculated from 0 to ∞. A more

elegant method would begin by determining the characteristic function, raising that to

the power m, to find the joint-characteristic function, and applying an inverse Fourier

transform (Davenport and Root, 1958, §4-3). Unfortunately, neither method would

be easy to apply, and there is no probability distribution we could use as a starting

point.

However, in the limit of very large values of m the distribution will approach

a Gaussian, making the task somewhat simpler,

Px(Z) ≈
(

1

2πσ2x

)1/2

exp

[

− (Z − Z̄)2
2σ2x

]

, (7.18)

with mean value Z̄ and variance σ2x. Success in tracking is guaranteed if the distribu-

tions Ps(Z) and Pn(Z) do not overlap, which would be approximately true when

Z̄s − Z̄n > βσs + βσn, (7.19)
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if β is 3.0, or greater. β determines the distance from the peak of the Gaussians where

the overlap occurs. If we insert Eqs. 7.14, 7.15, 7.16, and 7.17 into Eq. 7.19 we arrive

at

|Λ(s0)|2 >
2Ntβ

2

m

[

1 +

√
m

β

]

We can now place upper bounds on the probability of error using the fringe model

we developed earlier, Eq. 7.1. If |Λ(s0)| = Nt|γ|/2, so that there are zero background

counts, then we have

Nt >
8β2

m|γ|2

[

1 +

√
m

β

]

. (7.20)

If Nt is plotted as a function of β and m we can arrive at contours for the probability

of tracking loss. The contours for β = 3.0 are shown in Fig. 7.5. These lines can be

thought of as 3σ levels after which tracking is ensured.

An approximate solution

The delay will be incorrectly identified if the signal level drops to a height comparable

with the noise. The probability that at least one of b − 1 noise peaks is higher than

the signal is given by

pe = 1−
∞∫

0

Ps(Z)





Z∫

0

Pn(z) dz





b−1

dZ. (7.21)

This integration is identical to that used by Thompson et al. (1986, Eq. 9.60). The

term in square brackets represents the cumulative probability that the noise is lower

than a height Z. Z can be thought of as a threshold for success or failure in a binomial

distribution. If we then consider b − 1 samples of noise (the other spatial frequency

channels) then the probability of at least one sample exceeding the threshold Z0 is

the cumulative probability raised to the b − 1 power. The integral over Ps(Z) then

represents the probability that the signal is larger than all the noise peaks, and Eq.

7.21 therefore represents the probability of tracking failure.

If the signal and noise are represented by Gaussian distributions, then it is

possible to evaluate the integral. The predictions will only be useful when a large

number of frames are integrated together. The integral was therefore evaluated using

the distribution of Eqs. 7.18, with Eqs. 7.14 and 7.15 for the signal, and Eqs. 7.16

and 7.17 for the noise. The results are shown plotted in Figs. 7.6 and 7.7, indicated

by the dotted lines.

Simulations were also used to predict the onset of tracking failure. These used

the fringe model of Eq. 7.1 with Poisson distributed noise. The squared-amplitude in

the power spectrum was derived, and added to other simulations until the required

number of sums, m, were performed. After the integration the power spectrum was
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Figure 7.5: Contours for the probability of tracking loss. This models the bias
corrected amplitude-squared estimates, and indicates the minimum number of
frames necessary to track for a given signal level. The photons-per-frame is the
number of photons gathered across 256 pixels during the coherence time of the
atmosphere. This figure indicates where the 3σ levels of those distributions would
intersect, as a function of visibility.
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Figure 7.6: The probability of tracking error for |γ| = 1.0, as discussed in §7.4.
Displayed here are the results of simulations (open circles), the approximate so-
lution to the probability of error (dotted line), and the 3σ thresholds for tracking
failure (short dashed lines, bottom). The probability of tracking error is esti-
mated from the number of times the simulations failed to find the correct delay
out of a total of 1000 trials. In these simulations the visibility used was 1.0, and
bias-subtracted visibility-squared spectra are used, based on Poisson distributed
data. It is apparent that the 3σ thresholds accurately predict the onset of track-
ing failure, and that the approximate model more closely follows the simulations
only for large integrations.
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Figure 7.7: The probability of tracking error for |γ| = 0.5. The simulations and
predictions shown here are identical to those shown in the previous figure, with
even longer integrations included. Again, the 3σ thresholds accurately predict
where tracking failure will commence.
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searched to find the peak. If the peak was located correctly then the trial was recorded

as a success. 1000 trials were used at each point, over which the total number of

successes were counted.

It can be seen that the onset of tracking failure is the same, whether predicted

by the simulations, the approximate Gaussian model, or the 3σ thresholds. The agree-

ment between the Gaussian model and the simulations is good with large integrations,

but poor otherwise.

7.5 Extreme Low light level failure of the DFT approach

It should be noted that in the realm of extremely low light levels, where there is at most

one photon per frame, the discrete Fourier transform method fails completely. This

is perhaps obvious, but it has some interesting implications and is worth illustrating.

If the sequence to be transformed is as follows

fn =

{

1 n = n0

0 otherwise

then its discrete Fourier transform and its squared modulus are

Fk = exp

(

j
2πn0k

N

)

, and |Fk|2 = 1, 0 ≤ k ≤ N − 1.

Fk is a complex quantity containing two sinusoidal terms, one real and one imaginary,

whose frequencies are dependent upon the location n0 of the sample, but whose power

spectrum is entirely featureless with a constant height across all frequencies—with no

useful information. Integrating frames of data under these conditions cannot extract

delay information.

This does not imply that it is impossible to integrate frames where the mean

rate is equal to (or even less than) one photon per frame. Under such circumstances

it is still likely that two or more photons may occasionally be recorded in a frame, al-

lowing information to be gathered. It is with this in mind that Dainty and Greenaway

(1979) suggest removing data sets, or q-clipping the data, to improve the signal-to-

noise ratio. They suggest that gains can be had by throwing out sets with zero or one

photon per frame. Frames with zero or one photon reduce the signal by averaging,

but contribute no information.

Removing sets with only one photon will also reduce the roundoff error in the

calculation. The power spectrum for one photon event will be 1.0 ± 1 bit. For long

integrations under low light conditions the roundoff errors will accumulate, and so by

throwing out useless frames the errors can be reduced.
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7.6 Conclusion

In this chapter there were two estimators of group delay tracking that were examined.

The first in §7.2 calculated a DFT power spectrum from the channeled spectrum,

and the second in §7.3 looked at the DFT modulus and therefore fringe amplitude

estimates. The computer simulations of §7.4 were carried out for both methods, but

yielded identical results; only the trials for power spectrum estimates were displayed

in that section. The probability of tracking error was therefore identical with each of

the two methods, even though the equations for signal-to-noise ratio were different.

The probability of tracking loss was discussed in §7.4. It was shown to be more

informative than signal-to-noise ratios and to provide a better understanding of the

limitations of delay tracking. With this in mind, it should be noted that even if the

probability of tracking loss is high, perhaps 90%, it may still be possible to locate

the fringe peak by a histogram of peak locations. Tracking with light levels as low

as 3 photons-per-frame may be possible, but if there are at most 1 photon-per-frame

then the DFT was shown to be incapable of extracting information from a channeled

spectrum.



Chapter 8

Delay Tracking and Atmospheric

Turbulence

In the previous chapter it was assumed that the channeled fringes were motionless

when they were detected. This would only be true for short observation times.

Changes in the index of refraction of dry air in the atmosphere will cause random

delays in the propagation of starlight to different locations on the ground. The phase-

difference changes that occur between two separated points can be directly related to

motions of the white-light fringe in a Michelson interferometer. The fringe phase will

be stable for timescales between 1 and 10 ms, but will change by many wavelengths

during the course of an observation.

In this chapter the effects of atmospheric turbulence will be discussed and the

power spectra of phase-difference changes will be described. Appendix G reviews the

theory of wave propagation in a turbulent medium using the spectral representation

of random variables, and provides further background for the discussion. The at-

mosphere’s influence on active and passive delay tracking will be examined, and the

results of the previous chapter will be extended to account for fringe motions.

There are several extensions to the theory which will not be treated in detail.

Notably, it will be assumed when dealing with phase-difference measurements that

the fields are sampled at two separated points. Interesting work has been carried

out in the analysis of phase power spectra for fields sampled in large apertures. This

includes the papers by Noll (1976), Hogge and Butts (1976), Greenwood and Fried

(1976), Greenwood (1977), and others. However, because it will be assumed in this

discussion that the apertures have a zero size, those papers will not be discussed. In

effect, with point-like apertures there are no aberrations. Hogge and Butts (1976)

suggest that averaging across an aperture reduces the high frequency amplitudes in

the power spectra, and so assuming a zero aperture size will slightly overestimate the

high frequency terms.

117
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8.1 Visibility Loss Due to Fringe Motion

If pathlength changes occur during a time when the fringes are being recorded, then

the visibility of the fringes will appear reduced. Consequently the time for coherent

integration of the fringes is limited.

8.1.1 Coherent fringe detection

The recorded data consist of separate realizations, or frames, integrated over a sam-

pling time τ wherein the atmospheric turbulence is approximately ‘frozen’. From

frame to frame the optical path difference will change slowly and cause the fringes

to move across the detector. If τ is too large these motions will blur the detected

fringe as it is being recorded—a path change of one wavelength will cause the fringe

to disappear completely. This has been discussed by Koechlin (1985) and may be

illustrated as follows.

The fringe pattern will have the following form, where x is a pathlength offset

from the white light fringe position, κ = 1/λ, I0 is the brightness of the spectrum,

and Ib is a background intensity.

I(κ) = Is

[

1 + |γ| cos (2πκx− α)
]

+ Ib, (8.1)

If x is a function of time and changes at a uniform velocity we would have x = x̄+υt.

Let us integrate the fringe pattern from a t = −τ/2 to t = τ/2.

1

τ

τ/2∫

−τ/2

I(κ) dt = Is

[

1 +
1

τ
|γ|

τ/2∫

−τ/2

cos (2πκx̄+ 2πκυt− α) dt
]

+ Ib

By expanding the cosine term, performing the integration with respect to t, and

making the substitution ∆x = υτ , we arrive at

1

τ

τ/2∫

−τ/2

I(κ) dt = Is

[

1 + η|γ| cos (2πκx̄− α)
]

+ Ib,

where

η =
sin(πκ∆x)

πκ∆x
. (8.2)

If we keep in mind that κ = 1/λ, it can be seen that the fringe motion reduces

the visibility of the fringes at shorter wavelengths more than at longer wavelengths.

However, the predominant effect is to lower the visibility across the whole observed

bandwidth. The sinc function is very broad and, over a limited bandwidth, we may

approximate it as being constant at κ = κ̄,

sinπκ∆x

πκ∆x
' sinπκ̄∆x

πκ̄∆x
.
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Figure 8.1: Visibility loss due to fringe motion during coherent integration. If
the fringe moves during a time it is being recorded then the apparent visibility
will be reduced. The loss in visibility is shown here as a function of pathlength
change measured in wavelengths, ∆x/λ.

This is plotted in Fig. 8.1. Therefore, in the Fourier domain one would expect the peak

representing the fringe to be reduced by the factor η and to be reduced to zero when

∆x = λ. Coherent integration is therefore limited to times τ where the pathlength x

is stable to within a small fraction of a wavelength.

8.1.2 Incoherent fringe integration

By contrast, if τ satisfies the above restrictions then the power spectrum of the fringes

will remain essentially unchanged from one frame to the next. The power spectrum

will contain a peak at the spatial frequency of the fringe, and changes will not be

detectable unless they become resolved. Since the resolution is only dependent on the

total length of the data set, in this case the bandwidth of the channeled spectrum,

the spatial frequency components can be integrated over many intervals of τ . If ∆κ

is the bandwidth in wavenumber

∆κ =
1

λmin
− 1

λmax

then the resolution in pathlength ∆x available from a Fourier transform is ∆x = 1/∆κ

(see the discussion concerning the rectangle function in Appendix F). In effect the

Fourier transform counts chromatic fringes across the detector, but is not sensitive to

fractions-of-fringes.

A bandwidth from 400 nm to 500 nm therefore represents a difference in

wavenumber of 0.5 µm−1 and a resolution in delay of 2.0 µm. The delay can therefore
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change by 4 wavelengths and still be integrated at the same spatial frequency. For

this reason power spectrum estimates are useful under low light conditions. When

there is insufficient information during τ to establish fringe phase, it is still possible

to determine the group delay.

8.2 Temporal Power Spectrum of Phase-Difference

The delay changes that are induced by the atmosphere can be characterised by a power

spectrum of phase fluctuations, Ws(f), whose form is dependent on the assumptions

used to model atmospheric turbulence.

Tatarskii (1971, §52) discusses the spatial phase-difference spectrum which

would be observed between two points separated by a distance ρ. These points can be

thought of as the two apertures of a Michelson stellar interferometer. In his derivation

he assumes that only small perturbations are induced in a wavefront, so that when the

wave passes a point located by the vector r the change in its phase can be described

by S1(r). He writes that the time-dependent phase-difference can be described as

follows:

δρS(t) = S1(r, t)− S1(r + ρ, t),

It is also assumed that the turbulence is ‘frozen’ in the atmosphere and is swept past

the points of observation by a wind of velocity v⊥ that is perpendicular to the path

of the propagating wave. The phase-difference can therefore be written

δρS(t+ τ) = S1(r − v⊥τ, t)− S1(r + ρ− v⊥τ, t).

The phase structure function is then defined by

Ds(ρ) = Ds(|ρ|) = 〈[S1(r)− S1(r + ρ)]2〉, (8.3)

or Ds(ρ) = 2 [Bs(0)−Bs(ρ)] .

where Bs(ρ) is the covariance of phase described in Appendix G. The phase-difference

structure function is then

〈δρS(t) δρS(t+ τ)〉 = 1

2
[Ds(ρ− v⊥τ) +Ds(ρ+ v⊥τ)− 2Ds(v⊥τ)] .

Tatarski then shows that if the separation ρ and the wind velocity v⊥ are parallel

then the power spectrum of phase-difference fluctuations is

Wδs(f) = 2

[

1− cos
2πρf

v⊥

]

Ws(f) = 4 sin2
(
πρf

v⊥

)

Ws(f), (8.4)

whereWs(f) is the temporal power spectrum of phase fluctuations observed at a single

point. The behavior of the power spectrum is characterised by its response at low and

high frequencies where the following approximations are made.
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Low Frequencies

At very low frequencies f we may replace the sine squared term by its argument

squared and obtain

Wδs(f) '
(

4π2ρ2

v2⊥

)

f2Ws(f).

High Frequencies

If the separation ρ is large then the fluctuations at each point are uncorrelated, and

we can replace the sine squared term by its mean value of 1/2 (Tatarskii, 1971, §52,
Eq. 42; Tango and Twiss, 1980).

Wδs(f) ' 2Ws(f). (8.5)

8.2.1 Kolmogorov Turbulence

An expression forWs(f) may be derived using a modified Kolmogorov power spectrum

of index of refraction fluctuations. The derivation is summarised in Appendix G and

yields

Ws(f) = 3.28 · 10−2C2nk2Lv
5/3
⊥ f−8/3, (8.6)

where k = 2π/λ is the wavenumber of the propagating field, L is the distance prop-

agated through the atmosphere, and C2n is a measure of the spatial structure in the

index of refraction fluctuations. The low and high frequency response of the corre-

sponding phase-difference power spectrum is

Wδs(f)low = 2.59 ρ2C2nk
2Lv

−1/3
⊥ f−2/3

Wδs(f)high = 6.56 · 10−2C2nk2Lv
5/3
⊥ f−8/3

The power law dependence at low frequencies is -2/3 and at high frequencies is -8/3.

The complete spectrum Wδs(f) is shown in Fig. 8.2.

Fried’s coherence length r0

The high frequency response is often expressed in terms of r0, Fried’s coherence length.

Fried (1965) defines r0 to describe the phase structure function, such that

Ds(ρ) = 6.88

(
ρ

r0

)5/3

. (8.7)

From Tatarski’s work we have (1961, Chapt. 8, Eq. 8.22)

Ds(ρ) = 2.91 k2ρ5/3
L∫

0

C2n(r)dx, ρ ≥
√
λL,
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Figure 8.2: The power spectrum of phase-difference fluctuations. This example
is for a baseline B of 10 m, r0 = 10 cm, T0 = 14 ms, and λ0 = 0.5 µm. At high
frequencies the spectrum is dominated by the -8/3 power law. At low frequencies
the spectrum flattens off to a slope of -2/3. It has been assumed here that there
is an infinite outer scale length to the turbulence.

and so r0 can be expressed as

r
−5/3
0 = 0.42 k2

L∫

0

C2n(h) dh.

Now, for propagation through a homogeneous medium we can write

C2n(h) = C2n, and

L∫

0

C2n(h) dh = C2nL,

and therefore

Wδs(f) = 0.157 k2
(
v⊥
r0

)5/3

f−8/3. (8.8)

Buscher et al. (1992) write Eq. 8.8 in a slightly different form. They combine the

parameters r0 and v⊥ into a single coherence time T0,

T0 = 0.81

(
r0
v⊥

)

,

which represents the observing time over which the rms phase change is 1 radian

(Tango and Twiss, 1980, Eq. 4.9). They then use a ‘two sided transform’ to estimate

the phase and express the power spectrum in terms of µm of fringe motion at a
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reference wavelength λ0 (also expressed in µm).

Wδx(f) = 1.38 · 10−3 λ20 T
−5/3
0 f−8/3 (8.9)

which may be expressed in units of µm2/Hz.

Rms white-light fringe motions

It can be seen from the definition of the phase structure function, Eq. 8.3, that it

describes rms phase variations as measured at two separated points. It may therefore

be used to characterize the motions of the white-light fringe within an interferometer

of baseline B. Using Eq. 8.7 and expressing it in terms of wavelengths, we have

σ2x(B) = 6.88

(
λ

2π

)2 (B

r0

)5/3

.

By this means, Tango and Twiss (1980) predict that for r0 = 10cm, and λ = 500 nm

there should be expected pathlength errors of near B · 10−6. For a Michelson inter-

ferometer operating in the visible this means that, if B is expressed in meters, the

largest fringe motions should be about 3B µm. At a baseline of 600 m the pathlength

excursions would be greater than 1 mm.

Characteristics of the spectrum

An example power spectrum was shown in Fig. 8.2, and was calculated using Eq. 8.4.

The sine term in this expression causes the nulls at higher frequencies. They are a

result of the ‘frozen turbulence’ approximation: if the wind moves the turbulence by

one period (on a spatial scale) then the resultant phase change is zero. The behavior

at low and high frequencies is also well illustrated in this graph.

At high frequencies the spectrum is independent of the baseline. However, at

low frequencies it is not, and this is an area of much speculation in stellar interferom-

etry. Eq. 8.8 is based on a Kolmogorov model for the index of refraction fluctuations,

Φn(κ). Other models exist that typically include a finite outer scale length for the at-

mospheric turbulence; among these are the Von Karman and the Greenwood-Tarazano

spectra (Colavita et. al., 1987). The outer scale refers to the largest scale size at which

energy is injected into the turbulent medium. It is important because it predicts the

largest path fluctuations that will be present at low frequencies. Much of the analysis

of the measured spectra is concerned with fitting curves to extract this parameter.
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8.3 Previous observations of white-light fringe motion

There are only two interferometers that have observed power spectra of white-light

fringe motions at long baselines: the Mark III interferometer and the Infrared Spa-

tial Interferometer, both located on Mount Wilson in the United States. Although

measurements have been made elsewhere, including those by Nightingale and Buscher

(1992), these have been at comparatively short separations (less than 5 m).

The Mark III Interferometer

With few exceptions, the power spectra observed at the Mark III have been said to

agree well with Kolmogorov theory (Colavita et al., 1987; Buscher et al., 1992). The

agreement in the high frequency domain has been especially good, however at low

frequencies they have obtained conflicting results. A recorded fringe motion is shown

by Colavita et al. (1987) for a baseline of 12 m observing α Aql. It showed peak-

to-peak changes of 16 µm over 72 seconds, and short-term variations on a scale of 5

µm/s. Other power spectra, presented in the same paper, were used to suggest an

outer scale length of 2 km. More recent observations, using baselines up to 31.5 m,

have indicated an outer scale size comparable with the baselines of the observations

(Buscher et al., 1992). This is two orders of magnitude smaller than their previous

estimate. It can be seen from their graphs that the high frequency domain extends

even to about 0.5 Hz, or time-scales of several seconds, and the components at low

frequencies rise to about 1000 µm2/Hz at 0.001 Hz, suggesting variations on a scale

of 60 µm peak-to-peak over 15 minutes. The coherence times T0 for observations

with the Mark III have been reported to be in range of 14–26 ms at a wavelength of

λ0 = 500 nm (Buscher et al., 1992).

The Infrared Spatial Interferometer

The paper by Bester et al. (1992) presents measurements at the same site using an

infrared heterodyne interferometer with baselines of 4 and 13 m. Unlike the Mark

III observations, their data show departures from Kolmogorov theory. They state

that there are undoubtedly circumstances where the theory is valid; however, typical

conditions are often different from what the theory would predict, suggesting a scaling

somewhere between the Kolmogorov model and a random walk. They quote coherence

times, T0, of 10–30 ms as being typical at visible wavelengths and speculate that under

excellent seeing conditions the data may support an outer scale length of 5–20 m.

They are skeptical about the theory’s utility and conclude that at longer baselines the

pathlength fluctuations will probably not increase as quickly as has been generally

believed.
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8.4 Active and Passive Tracking of Fringe Motions

In the following section the performance of two different modes of fringe tracking will

be examined: active and passive tracking. At high light levels it will be possible to

actively follow the delay changes and compensate for them in real-time. If insufficient

light were available for active tracking then passive observations could still locate the

mean value of the path difference and update the delay position perhaps after several

tens-of-seconds or minutes.

8.4.1 Active fringe tracking

The limitations of active tracking can be estimated if one assumes that the changes

in delay occur at a constant rate over short timescales. Such changes would also be

observed if the baseline orientation were not accurately known and systematic errors

existed in path compensation. The delay would appear, sweep through the range of

detectable values, and then vanish.

Under what conditions could active tracking be used? If the delay is moving

at a rate of υ µm/s, then after a time t it will have changed by υt µm. The peak in

the power spectrum can be integrated provided the delay changes remain unresolved.

As was discussed in §8.1.2 this will be true so long as υt < 1/∆κ. Therefore the total

integration time should be set to T = 1/(υ∆κ), and sub-divided into m frames each

of duration τ , where the total change is a fraction of a wavelength, α, or υτ = α/κ̄.

The quantity α then determines the loss factor η which reduces the fringe visibility

during coherent integration, as discussed in §8.1.

|γ| → η|γ|, η =
sin(πα)

πα
.

It follows that if the parameters are chosen according to these rules, as the speed

υ approached 0 the coherent integration time would approach ∞. Furthermore, the

maximum number of frames would always be independent of υ,

T

τ
= m =

κ̄

α∆κ
. (8.10)

Recall that the inequality of Eq. 7.20 must be satisfied to insure proper tracking.

That expression is restated here:

Nt >
8β2

m|γ|2

[

1 +

√
m

β

]

. (8.11)

where Nt is the total number of photons recorded in a frame, m is the total number

of frames integrated, |γ| is the fringe visibility and β is a threshold, β ' 3.

Let the total bandwidth extend from 440 nm to 550 nm. We have therefore

that ∆κ = 0.45 µm−1, and κ̄ = 2.05 µm−1. Now if we set α = 0.25 then η = 0.90
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and the number of frames m will be 18. We can now put these values into Eq. 8.11

using β = 3.0, and the minimum number of photons-per-frame is therefore 9.7 while

|γ| = 1, independent of the rate of pathlength change υ.

This arises for the following reasons: the longest integration time is restricted

by the changes in delay, governed by υT ; the frame time is determined by the allowable

coherence loss η and the rate υ. These two restrictions limit the total number of frames

that can be integrated, and for a restricted integration time there is a corresponding

minimum number of photons-per-frame required to observe the delay. The number of

frames is independent of υ, and therefore so are the required photons-per-frame.

For delay acquisition it may be possible to improve the sensitivity of the system

by deliberately reducing the resolution in the power spectrum. This could be done

by averaging neighbouring samples in the spatial frequency domain: the delay would

then have to travel further in order for it to be resolved in the spectrum and could

therefore be integrated for longer.

8.4.2 Passive observations of delay

In the previous case it was assumed that the delay never passed through the same

spatial frequency twice while being integrated, and that the purpose was to follow it

as it moved. If insufficient light is available for that task, then it may still be possible

to determine the mean value of the delay if the excursions are not large.

The effects of atmospheric path fluctuations were examined by Colavita and

Shao (1988). They modelled the delay as being Gaussian distributed with an arbitrary

mean value and a variance given by

σ2x = 6.88

(
λ

2π

)2 (B

r0

)5/3

,

where B is the length of the baseline. This expression is based on Kolmogorov turbu-

lence theory and was discussed in §8.2.1. They also assumed that the path fluctuations

were much larger than the sampling interval in spatial frequency, σx∆κÀ 1, so that

sampling effects, discussed in Chapt. 6, could be ignored. After a long integration, the

peak value at each spatial frequency would depend on the amount of time the delay

had rested there. Changes in delay would integrate to describe a probability density

function, and the central peak would have a height proportional to the area of the

curve immediately below it. They then used this to estimate the signal-to-noise ratio.

Instead, let us introduce the loss factor u. Using a change of variables this can

be expressed as an integration across the Normal distribution.

u =
1√
2π

ε∫

−ε

exp

(

−y2
2

)

dy, where ε =
1

2σx∆κ
. (8.12)
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Baseline (m) σx (µm) Response u (%)

5 4.9 16.9

10 8.7 9.6

20 15.5 5.4

40 27.7 3.0

80 49.3 1.6

160 87.9 1.0

320 156.6 0.5

640 279.0 0.3

Table 8.1: The sensitivity in delay tracking for weak sources. The peak response
versus baseline is tabled, assuming long integrations are required to find the mean
delay. This is for λ = .450 µm, r0 = 0.10 m, and ∆κ = 0.477 µm−1. An infinite
outer scale is assumed.

The peak response depends on the width of the Gaussian: the wider the Gaussian, the

lower the peak. Representative values for the peak response as a function of baseline

are indicated in Table 8.1. This factor can now be included in the probability of

tracking loss. The power spectrum will then peak with a new value of

|Λ|2 → u |Λ|2

So, taking this into account in Eq. 8.11, we have

Nt <
1

u

8β2

mη2|γ|2

[

1 +

√
m

β

]

.

This will substantially increase the number of photons-per-frame required to observe

the group delay. However, it is possible to improve the sensitivity by reducing the

resolution, ∆κ, and tailoring it to the expected fluctuations.

8.5 Conclusion

The temporal phase-difference power spectrum for Kolmogorov turbulence was de-

scribed to predict the motions of the white-light fringe that would be observed with

a Michelson stellar interferometer. It was shown that for high frequencies the power

spectra should have the same characteristics at all baselines. This implies that the

bandwidth requirements for a fringe tracking servo will not be much different for a

100 m baseline than for a 10 m baseline. The coherence times will be limited to

10–30 ms, corresponding to rms phase changes of 1 radian. This implies that at

λ = 500 nm, changes in pathlength of 24 nm/ms may occur (3σ change).

The requirements at longer baselines will depend on the low-frequency be-

havior of the atmosphere. Based on Kolmogorov turbulence theory, the pathlength
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fluctuations over a 500 m baseline may be as large as 1 mm peak-to-peak. However,

measurements are yet to be made with baselines longer than 31.5 meters, and the

limitations of the theory are not well known. Judging by current observations it is

probable that variations at least as large as 10–100 µm will be present, with changes

as fast as 5 µm/s occurring over timescales of seconds.

The theoretical performance of group delay tracking has been outlined. The

limitations of coherent and incoherent integration of delay have been reviewed, and a

figure of merit has been derived for the threshold of delay detection for moving fringes

under low light level conditions. The limitations have been spoken of in terms of the

‘number of photons-per-frame,’ where a frame refers to the photons collected across

all spectral channels during the coherence time of the atmosphere. The sensitivity of

delay tracking will therefore also depend on the optical efficiency of the interferometer

and the detective quantum efficiency of the array detector.

8.5.1 Active vs. passive interferometry

The number of photons per coherent integration time, T0, limits the ability to actively

track the delay location. This was discussed in §8.4.1. For the example that was

considered, with a bandwidth of near 100 nm, it was found that under the best of

conditions, with |γ| = 1.0, more than 9 photons-per-frame are required to actively

track fringes. At lower light levels the observations are restricted to determining the

mean value of the delay—which is only possible if the instrument is sufficiently stable.

Shao and Colavita (1992) have designated the two modes of operation as active and

passive interferometry. In the later case the interferometer must be able to track

sidereal motions to a greater precision than the atmospheric fringe wander. The

fringes in the channeled spectra will then oscillate about a mean spatial frequency,

which can be determined over long integration times. The limitations for the passive

observation of delay were outlined in §8.4.2.

8.5.2 Group delay tracking and passive interferometry

Under low light conditions the fringe amplitude detected by group delay tracking is

sensitive to the instrument stability. When there is enough light the delay can be

detected before it has moved from one spatial frequency bin to another. However, if

long integrations are required then the signal becomes spread across many frequency

bins. The peak is reduced by the height of the probability distribution of delay

movements. For a total bandwidth of ∼100 nm, centered on λ = 450 nm, a motion

of ±20 µm would smear the peak across ± 10 spatial frequency bins, but move over

only ±1/25th the width of the coherence envelope. By contrast, it should be noted

that the method of envelope-tracking, described by Davis and Tango (1986), is largely
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insensitive to pathlength fluctuations, and is capable of observations in the presence

of even larger instrumental delay excursions.

As was described in Chapt. 2, envelope-tracking is a passive method of observa-

tion. One photomultiplier is used in each of the combined beams for single wavelength

observations. Narrow bandwidths are required so that the delay envelope is broad;

with a bandwidth of 0.4 nm the coherence length would be near 500 µm. Observations

of visibility-squared require only that the pathlength be stable to a within a fraction

of the width of the delay curve. Measurements are taken across the envelope at differ-

ent steps in delay. Fluctuations in pathlength cause the measurement point to be ill

defined, so that what is recorded is an average visibility over that region of the delay

curve. However, unlike group delay measurements, the visibility is not substantially

reduced by path changes.

If the delay is known then envelope measurements can be made at a single fixed

position with respect to the peak of the delay curve, and it is no longer necessary to

step through the coherence envelope to determine the peak response. The relationship

between the measured and the peak visibility can be inferred from the path-difference.

The calculation of visibility would be remain the same as described in §2.4, but would
be carried out at larger bandwidths and therefore have an increased sensitivity.
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Chapter 9

Data Processing

Part IV of this thesis is devoted to experiments in group delay tracking using the

PAPA camera. The hardware and software is described here in Chapt. 9 and the

experimental results follow in Chapts. 10 and 11.

The discussion of the signal processing has been divided into several topics:

data acquisition, calculation of the periodogram, integration of power spectra, and

extraction of the signal peak. The timing of the electronics will not be discussed, but

the data flow will be described through each component in the system. The circuit

diagrams for the hardware and more detailed information about the processors have

been documented elsewhere (Lawson, 1993).

9.1 Data Acquisition

The Data Format

Each photon address is represented by a pair of 8-bit numbers, x and y, but only the

x coordinate is used in processing. It is assumed that all photon events issued by the

camera belong to the channeled spectrum, and to insure this is true a slit is placed

at the image intensifier. It is aligned along the x axis so that only photons from the

spectrum will be seen by the camera’s optics.

The same process could also have been done electronically, by latching the y

data and rejecting events that occurred away from the spectrum.

The Data Acquisition

As shown in Fig. 9.1, the 8-bit data are integrated in static RAM (SRAM). There

are two banks of memory, each with 512 registers. The lower half of the memory is

132



9.1. DATA ACQUISITION 133

PAPA
ACQUISITION

DATA

SRAM

512 x 8-bits

SRAM

512 x 8-bits

INTERFACE

AV68KAV68K

MEMORY

ZEROS

FFT PROCESSOR

Figure 9.1: The data flow in the Data Acquisition module. The data from the
PAPA camera is integrated in one of two buffers of static RAM, while the other
buffer of just-collected data is read out to the FFT processor. The memory of
each buffer is reset to zero after its data has been read out, and the two buffers
swap after each integration period. The buffers are single mapped to the address
space of the AV68K 68000 computer.

used for data integration, while the upper half is used for a look-up table. When a

photon arrives its address is used as an index to the table, and an appropriate location

in memory is incremented. This continues until the end of the integration period,

which will be between about 1.5 and 10 ms duration depending on the atmospheric

seeing conditions. A ping-pong buffer arrangement ensures that all photons events

are integrated: while one buffer is filling up with data the other is being processed,

and once the data had been removed the memory is erased. At the end of the cycle

the two buffers swap and the cycle repeats. Each bank of memory is mapped into the

control computer, and the look-up tables can be easily changed in software.

Although the hardware could run with a period of 0.2 ms, the shortest inte-

gration time had to be greater than 1.2 ms, since that was the time it took for the
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interrupt routine to process data.

9.2 The Calculation of the Periodogram

In each cycle the periodogram of the integrated data is calculated. A 256-point FFT is

performed with integer arithmetic using an Austek 41102 Frequency Domain Proces-

sor. The transform of the data is produced from the processor as a series of complex

numbers (xm, ym). The modulus of each number is then calculated by a Plessey

‘Pythagoras Processor’ rm = (x2m + y2m)
1/2, and the result is written into an array in

memory.

Austek A41102 Frequency Domain Processor

The A41102 is a CMOS pipeline processor used for computing FFTs in real-time

with up to 256 points, and may be cascaded to perform much longer transforms. It

operates in 16, 20, or 24 bit precision, and will perform a 256-point transform in 102.4

µs when used in 16-bit mode. The architecture of the chip will not be described here.

More detail about the A41102 processor can be found from its User Manual (Austek,

1988a) and Product Specification (Austek, 1988b). The terminology and algorithm of

the FFT are described by Bergland (1969) and Cochran et al. (1967).

The photon data arrives as a series of 8-bits samples, h(n), which are read into

the A41102 as if they had been multiplied by 212. The data ports on the chip are

24-bits wide, and are illustrated at the top of Fig. 9.2. The calculations are performed

within the chip using 20-bit precision, with the top 16-bits used in the next stage of

processing. The four least-significant bits are not used. The transform can be written

as

Re [H(m)] =
N∑

n=0

{

212 · h(n)
}

cos

(
2πnm

N

)

, 20 bits (9.1)

Im [H(m)] =
N∑

n=0

{

212 · h(n)
}

sin

(
2πnm

N

)

, 20 bits (9.2)

where N = 256. The real and imaginary parts are output as integer 16-bit numbers

xm = 2−4Re [H(m)] , 16 bits, (9.3)

ym = 2−4 Im [H(m)] , 16 bits. (9.4)

The A41102 has three data ports which can be arbitrarily configured as input

or output. Port A is used for input, Port C for output, and Port B is unused. The chip

is software programmed through its Supervisory Port to perform 256-point forward

transforms, reading in the data samples in bit-reversed order, with output in natural



9.2. THE CALCULATION OF THE PERIODOGRAM 135

Austek
A41102

Frequency Domain
Processor

8 bits PAPA data

MSB

0 0 0 0 0 0 0 0 0 0 0 0 X X X X

LSB

input

16 bits Real 0 0 0 0 X X X X output

16 bits Imaginary 0 0 0 0 X X X X output

Plessey
PDSP16330

Pythagoras Processor

16 bits Real input

16 bits Imaginary input

16 bits Magnitude output

TRW
TMC216H

16 x 16 bit Multiplier

16 bits from SRAM input

8 bits Filter No. 0 0 0 0 0 0 0 0 input

MSP of 32 bit Product X X X X X X X X X X X X X X X X output

Figure 9.2: The data flow through the processors. Integer arithmetic is used
throughout. The PAPA data is effectively multiplied by 256 on entry to the
Austek Fourier Transform Chip. The amplitude of the transform is then cal-
culated in 16-bit precision by the Pythagoras Processor. The last stage in the
process is an iterative integration, which may be performed using the TRW mul-
tiplier: it reads in a 16-bit number and outputs a 16-bit number which may then
be added to incoming data from the Pythagoras processor. The addition, which
is not shown here, is also performed with 16-bit precision.

order. Scalers are available at each butterfly in the FFT, allowing the data to be

divided by factors of 2 to avoid integer overflows. The scalers may be enabled by

setting the appropriate bits in the Supervisory Port, and can be used to improve the

accuracy of the calculation. The effect of using integer arithmetic is covered in detail

by Welch (1969).

Plessey PDSP16330, Pythagoras Processor

The PDSP16330 is a digital CMOS IC that performs cartesian to polar coordinate

conversions in 16-bit precision at high speeds. 16-bit xm and ym data can be clocked

into the chip every 100 ns, and 16-bit magnitude rm and phase φm will appear at the

output 24 clock cycles later.

rm = (x2m + y2m)
1/2, 16 bits. (9.5)
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FFT
Austek
Frequency Domain Processor

r Plessey
Pythagoras Processor

ADD
Integration by
16-bit Addition

BUFFERMULT

TRW TMC216H Multiplier
16 x 16 bit

a

INTERFACE

AV68K

Stores Address of
Peak in SpectrumMAX FIND

SRAM
512 x 16-bits
Memory

Figure 9.3: The data flow in the FFT processor module: The data is read into the
FFT chip and then passed through the Pythagoras Processor. This processor does
a cartesian to polar coordinate conversion, and the modulus of the transform is
stored in memory (the phase information is not kept). This spectrum is multiplied
by a constant less than 1 and then added to the next incoming spectrum, making
it possible to integrate weak signals. The address of the peak in the spectrum is
determined as the spectrum is written into memory.
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The phase information is ignored. The operation of this chip is described by Plessey

(1988). It accepts two’s complement xm and ym input, and is therefore compatible

with the output of the A41102.

9.3 Integration of Power Spectra

Provision was included in the electronics to recursively integrate the power spectra in

the manner described by Bozic (1979, §6.3). The method of integration is illustrated

by the flow diagram of Fig. 9.3. After the data leaves the Pythagoras Processor it is

summed with a fraction of the previous spectrum and is then written into memory.

The input-output relationship is described by the difference equation

y(nτ) = a y(nτ − τ) + x(nτ), a < 1. (9.6)

In this formulation y(nτ) is one component in a new estimate of the power spectrum,

y(nτ − τ) was the previous estimate stored in memory, and x(nτ) is new data from

the Pythagoras Processor. The recursion retains information from previous samples,

over a time constant determined by the choice of a. Its frequency response function

is given by Rader and Gold (1967),

|H(f)| =
[

1 + a2 − 2a cos 2πfτ

]−1/2

, (9.7)

and is plotted in Fig. 9.4. This filter is said to have an Infinite duration Impulse

Response (IIR). The coefficient a determines what fraction of the previous samples

contribute to the current estimate. When a = 0 all previous samples are forgotten,

but when a = 1 then all previous samples are retained. This is also illustrated by the

frequency response: as the value of a is increased the response to higher frequencies is

reduced and the filter integrates for longer. If the new data is roughly constant with

each new measurement, x(nτ) = x, then after a long time the recursion will yield

approximately

y(nτ) '
∞∑

n=0

anx =
x

1− a, 0 ≤ a ≤ 1. (9.8)

The mean level of the power spectrum can be derived from the filter coefficient and

the current estimate:

x̄ = (1− a) y(nτ). (9.9)

TRW TMC216H, 16 x 16 bit Multiplier

The TMC216H is another high speed CMOS chip. It performs a 16 x 16 bit mul-

tiplication in 145 ns, and accepts a variety of input data formats. It is used as the
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Figure 9.4: The frequency response of the single-pole recursive filter for τ = 2 ms
and with various filter coefficients, a.

multiplier in the recursive filter. The 16-bit y(nτ − τ) data is input from memory and

effectively multiplied by the fraction

a =
a

256
, (9.10)

where a is an 8-bit integer: the data is first multiplied by a·28 and then divided by

216. The result is later added to incoming data from the Pythagoras Processor and

written back into memory. The multiplication is illustrated in Fig. 9.2. Only the top

16-bits of the product are used, so the division by 216 is performed automatically.
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9.4 Locating and Filtering the Delay

9.4.1 Locating the peak in the power spectrum

The integrated spatial frequency spectrum will contain a peak at the zero-frequency

that is proportional to the total number of photons recorded. It will also have low

frequency components that describe the shape of the stellar spectrum, and a peak at

the spatial frequency of the channeled fringes.

The location of this peak is determined during the recursive integration. As

each component in the spectrum is being stored in memory, it presents itself on a

data bus that is monitored by a ‘Max-find’ module, shown in Fig. 9.3. The module

ignores the first low-frequency components, but latches the 10th one. Each subsequent

component is compared to see if its amplitude is higher. If so, then it replaces the

previous maximum, and both its amplitude and address are recorded. This continues

until the whole array has been stored in memory, whereupon the peak in the spectrum

will have been found. The peak is determined during every cycle of the integration.

9.4.2 Tracking the delay

The filter coefficient a is set to correspond to the bandwidth of the expected path

motions. If the visibility of the fringes is good and the fringe peak stands out, then it

would be straightforward to filter the raw estimates and provide feedback for tracking.

However, if the signal-to-noise ratio is low then the task becomes more difficult.

When the fringe amplitude has a height comparable with the noise there will be

many recorded peaks located randomly, spanning the full range of spatial frequencies.

Nevertheless, a subset of the peaks would produce a trace through the data which

would announce the presence of a signal. This is well illustrated by the data presented

in Chapt. 10. See for instance Figs. 10.2 and 10.4. The noise events may induce large

and rapid fluctuations of the peak position, far in excess of the signal motions. The

delay tracking should therefore be able to do several tasks:

1. Identify the presence of a signal.

2. Selectively ignore likely noise events.

3. Use the ‘good’ data to estimate the current delay.

Let us consider each of these steps in turn.
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The detectability of a signal

If there is no signal present then the peak location in the spectrum would change

randomly. A plot of event location versus time would show a uniform distribution of

events across all spatial frequencies. The mean change in delay from one sample to

the next would be large, and so would the bandwidth of delay changes.

If a signal is present and distinguishable, then on average its height will be

higher than the noise, and it will be detected as the global peak more frequently. The

trace of peak location versus time would show clumping in the data, and the average

position shift from one peak to the next would be reduced. If such a trend suggested

the data was less random, then it would indicate the presence of a fringe.

A running mean of the change of peak location is a simple measure of the

randomness of the data. If the past locations are given by p(n− k), and the average

change is now d(n) then we can write

d(n) =
1

M

k=M∑

k=0

|∆p(n− k)|, (9.11)

where

∆p(n− k) = p(n− k)− p(n− k − 1). (9.12)

This should drop to lower values if a trend exists.

The removal of noise events

Once the signal is found it can be bracketed by a spatial frequency filter: a rectangle

function centered on the spatial frequency of the signal and spanning up to 10 µm

of delay either side. The filter boundaries can be re-defined after each frame, and so

the filter moves with the signal. Any peaks which occur outside those boundaries will

be ignored, and the signal becomes the highest peak within the filter. A momentary

drop-out would not cause a loss of tracking: the local maxima inside the filter would

be used until the signal returns.

If it becomes obvious that the peak has slipped outside, or has been lost entirely,

then the filter is disabled. This will stop it wandering around aimlessly, bracketing

one noise peak after another.
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Figure 9.5: The frequency response of the moving average rectangular window.
In this example M = 32 and τ = 2 ms. The 3 dB point is near f = 1/(2Mτ) and
the first null is at f = 1/(Mτ).

The current delay estimate

The remaining data is then low-pass filtered using a bandwidth again tailored to

the expected phase-difference power spectrum. The average peak location can be

determined over a period of M samples,

y(nτ) =
1

M

k=M∑

k=0

x(nτ − kτ). (9.13)

This is easy to program and has the virtue of requiring only a small number of calcu-

lations in each cycle: one need only add the most recent term, k = 0, and subtract the

oldest, k =M . Furthermore, if M is a power of 2 then the division can be performed

by bit-shifting the sum to the right. The frequency response of this filter is shown in

Fig. 9.5, and is given by Proakis and Manolakis (1992, Eq. 8.1.16),

|W (f)| = | sin(πfτM)|
| sin(πfτ)| . (9.14)

The value of M determines the 3 dB point of the filter, and the phase response is

linear.
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9.5 Passive Tracking

If 100 nm of bandwidth is used then the resolution in delay would be 2 µm. From

the discussion in Chapt. 8 it is reasonable to assume the delay will change by several

microns per second, and therefore the incoherent integration time would be limited to

several hundred milliseconds, or a few hundred frames of photon data. By inspection

of Figs. 7.6 and 7.7 that implies it may be possible to actively track with as few as 10,

or even 3, photons-per-frame, depending on the visibility of the fringes and the level

of the background counts.

If active tracking is impossible then longer integration times are required so

that the mean position of the delay can be found. Although the hardware is not

capable of integrating more than about 200 frames of data, since the filter of Eq. 9.8

will overflow, the data can be transferred to the computer memory and integrated

using 32-bit precision. This allows the data to be accumulated for half an hour or

more.

9.6 Software and Hardware

The hardware was interfaced to a 68000 board computer, the AV68K, which is made

by Interrupt Systems (1988). Clock signals are issued for every frame, and at the end

of each cycle the electronics issue an interrupt request to the computer. At that time

the hardware registers are read, the ‘Max-find’ location in transferred, and, if passive

tracking is used, so too is the complete spatial frequency spectrum.

The control software was written in the C programming language, and the

hardware registers, including the Supervisory Port of the A41102, are each mapped

to specific addresses in computer memory. There are 64 different software registers

which are defined for serial communication with other computers. The AV68K has

two RS232 serial ports: one is used to monitor the status of the fringe tracker, and

the other is used to send data to the computer of the path-compensating carriage.

It is therefore possible to send feedback signals to the carriage and close the

servo loop for delay tracking. In its current implementation the carriage computer

reads the data every 80 ms, and, as was discussed in §9.5, this provides sufficient

response to follow the delay fluctuations. The servo equations are programmed in the

carriage computer and include error signals from the laser metrology system.
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9.7 Summary

In this chapter the data processing was described with emphasis on methods used for

active delay tracking. The raw data are 8-bit photon addresses which are issued by

the PAPA camera, and which arise in the channeled spectrum. These are integrated

in a ping-pong buffer, Fast Fourier Transformed, and the resulting power spectra are

then integrated recursively. The time constant for the integration is set by the value

of a (an 8-bit number), and integer overflows are avoided by setting an appropriate

number of FFT scalers in the A41102. The peak in the power spectrum is recorded by

the Max-find module and is then filtered to derive the current estimate of the delay.

Non-linear filtering is used to improve the performance by selectively ignoring likely

noise peaks.

The processor was used for both laboratory and stellar observations, which are

now presented in Chapts. 10 and 11.
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Performance Tests

The rebuilt PAPA camera was completed in July of 1992, following the final testing

of its new analog electronics. It was used for laboratory experiments in group delay

tracking through until December and was then moved to Narrabri, to be installed at

SUSI. The performance of the delay tracking system is described in this chapter. The

stellar observations are described in Chapt. 11.

10.1 Laboratory Measurements in Sydney

An Interferometer for channeled spectra

A Michelson interferometer was set up in the lab, as shown in Fig. 10.1. Several light

sources were available for use: a HeNe laser to align the instrument and remove tilt

fringes; a xenon lamp to produce the channeled spectra; and a low pressure mercury

vapour lamp to calibrate the spectrometer (not shown). The light was focused on a

pinhole and collimated to a 20 mm diameter beam, allowing the pinhole to be viewed

as an artificial star.

In one arm of the interferometer was a piezo activated mirror with an axial

movement of 40 µm, allowing pathlength changes of 80 µm. It was placed on a trans-

lation stage and mounted so that its angle of tilt could be adjusted. A programmable

function generator was used to drive it and to produce sinusoidal pathlength changes.

The DC level of the sinusoid could be adjusted at the piezo controller.

The output of the interferometer was directed to a prism of SF52 glass, which

had been rotated to the angle of minimum deviation. The dispersed light was then

focused to the input of the PAPA camera, using a 400 mm focal length achromat to

image the spectral band from 400–520 nm. The output of the camera was then sent

to the processor described in the previous chapter. In these examples the data were

144
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Figure 10.1: The layout of the Michelson interferometer used for laboratory tests.
Not shown here are neutral density filters, polarizers, the low pressure mercury
vapour lamp which could replace the laser, and the compensating plate which
was included in one arm of the instrument.
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averaged to 128 pixels and zero-padded prior to the FFT. A 256-point transform was

used yielding 128 spatial frequency components each representing a change of about

1 µm optical path difference.

Observations of pathlength changes

It was found that for high light levels, with 100 or more photons-per-frame, the pro-

cessor could observe pathlength changes with peak-to-peak amplitudes of 20 µm, at

frequencies up to 3–4 Hz. At higher frequencies and larger amplitudes the fringe

would disappear where the fastest delay changes occurred. It would be lost for part of

the period, but would re-appear at the top and bottom of the sine wave. It was still

possible to find the delay with as few as 10 photons-per-frame, providing the period

and amplitude of the sinusoid were reduced.

Figure 10.2 shows a trace of a 2.5 Hz sine wave with a peak-to-peak amplitude

of 26 µm. There are 2000 frames represented. Each dot in the figure is the recorded

peak for a single estimate of the delay, as seen by the Max-find module (discussed in

§9.4.1). There is scattered noise, but the location of the delay is easy to see.

At low light levels the signal-to-noise ratio was generally poor, and so the

filtering methods discussed in §9.4 were implemented. This is illustrated by the data

in Fig. 10.3, which was processed at the same time, but ignored the noise peaks. In

each interrupt cycle the software recorded the location of the global peak, detected by

the Max-find module, and noted the delay-change from one estimate to the next. If

the change were to cause a jump greater than 10 µm, then the most recent estimate

was ignored and a local maximum was used. All of the widespread noise was thereby

removed. There are however, two locations where the tracking was lost because the

signal slipped out of the filter. The filter then followed the local maxima and jumped

from one noise peak to another until the true signal passed within range.

Figures 10.4 and 10.5 show similar data sets. The amplitude of the delay

changes is now larger, and the signal-to-noise ratio is lower. A slightly different pre-

filter was used. In this case, if the tracking was lost the filter would increment the

delay towards the global maximum at each interrupt cycle. It would therefore not

wander aimlessly and would be faster to regain the tracking.

By these tests it was shown that the processor could follow the delay even under

poor conditions, and that it would be capable of tracking atmospheric path motions.

The tracking would not fail until the pathlength changes were larger than those that

could be induced by the atmosphere. An amplitude of 20 µm peak-to-peak at 2.5 Hz

causes a delay change of 157 µm/s at the zero crossing of the sine wave. In these tests

a frame time of 1.5 ms was used, and so the most rapid change was 240 nm per frame.

As was discussed in Chapt. 8, the atmosphere will cause rms phase changes on the
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Figure 10.2: The response of the processor to a sinusoidal delay change of 26 µm
peak-to-peak and a frequency of 2.5 Hz over 3 seconds. The delay axis is 1 µm
per division. The resolution in tracking is 2 µm.

Figure 10.3: The data have now been passed through a rectangular filter that
ignores events more than 5 µm away from the last estimate.
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Figure 10.4: Another trace of delay with a higher amplitude.

Figure 10.5: The previous trace after being passed through a rectangular filter
which travels towards the current estimate if the tracking is lost.
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order of 1 radian per 10–30 ms, or only 36 nm measured over the same frame time

(3σ change at λ = 500 nm).

The high frequency response of the delay tracking would be limited to ∼5 Hz,

since changes of less than 2 µm cannot be resolved by the processor, and it would

take several hundred milliseconds for the atmosphere to change the path length by

that amount. Much larger path changes may be induced by the atmosphere, but since

they would occur at lower frequencies they would not be difficult to track. The PAPA

camera and group delay hardware were therefore installed at SUSI.

10.2 Tests using SUSI in Autocollimation

In this section experiments are described to evaluate the processor’s response to large

delays and to measure the noise level in the DFT amplitude estimates. The following

tests were performed with SUSI configured for autocollimation. In that mode SUSI

acts as a standard Michelson interferometer, but with arms more than 140 m long.

There are two large optical tables within the main enclosure of the instrument

that are intended for separate observations in the blue and red parts of the visible

spectrum. When the camera was taken to Narrabri only the blue table was being used

for visibility measurements. The combined beams could be redirected to the red table

where the prism spectrometer and PAPA camera were installed. Two periscopes were

used to redirect the light, which was removed after the beam combiner but before the

prism that is labeled S2 in Fig. 1.1.

Autocollimation from the Beam Reducing Telescope

SUSI is routinely aligned by autocollimation prior to an observation. An overview of

the alignment procedure is given here to show how channeled spectra were produced

for tests with the camera. The beam division and recombination is shown in Fig. 10.6.

Light from a HeCd laser is injected at the beam combiner (bc) so that two beams are

sent out through the instrument, one towards the north end of the baseline and one

toward the south. As can be seen in Fig. 1.1, the beams travel the length of the optical

path compensator before reaching the beam reducing telescope. An autocollimating

mirror is placed there to reflect both beams back along their paths, returning them

to the beam combiner.

There are three quadrant detectors on the main table: north, south, and ref-

erence. The reference detector receives starlight after the beam combiner and is used

to align the north and south beams so that their wavefronts are parallel. The north

and south detectors look into each beam separately, and are used as the detectors in

the tilt correcting servo. Each beam is centered on its quadrant detector and then
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Figure 10.6: Beam combining for autocollimation with SUSI. The main beam
combiner (bc) is shown. The light is injected from the right and is divided into
two beams which travel the length of the optical path compensator to the Beam
Reducing Telescope. They are then reflected back by an autocollimating mir-
ror, return to the beam combiner, and exit on the left. An HeCd laser is used
for alignment, and a tungsten lamp is used for the experiments with channeled
spectra.

compared with the reference detector. Shutters are used during an alignment to select

which beam reaches the reference detector, and adjustments are made by changing

the tilt of selected mirrors. When the two beams are each centered on their respective

quadrant detectors and also on the reference detector, then the two wavefronts will

be parallel.

Further fine adjustments are required to view channeled spectra. A video mon-

itor is used to observe tilt-fringes in the recombined laser light, and fine adjustments

are made to the tilt mirrors to remove the residual tilt between beams. The light

source is then changed from the HeCd laser to a mercury vapor lamp, and the fine

carriage is positioned so that channeled spectra can be observed visually near the

brighter spectral lines. This is performed with the aid of a microscope. It is then

possible to step the carriage to vary the frequency of the channeled spectra near the

white-light fringe position. As a final step the light source is replaced by a tungsten

lamp which has a broad, faint, and featureless spectrum. The interferometer is now

ready for the measurements.
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The pathlengths can be changed by moving a piezo at the focus of the catseye

on the path compensator carriage. Each pass through the carriage adds twice the

piezo motion, and in autocollimation this is doubled again. The 30 µm piezo was used

to provide path differences up to 120 µm.

Response at large path-differences

The design of SUSI does not allow the tilt correcting servos to be run in the autocol-

limation mode, and seeing within the enclosure can only be corrected while observing

a star. The seeing was noticeable during the tests and resulted in variations in fringe

visibility. Measurements were therefore restricted to instants when the seeing was

apparently good.

The photon data were averaged to 128 pixels before the periodogram was calcu-

lated, and the bandwidth was the same as in Sydney, so each step in spatial frequency

corresponded to 1 µm path difference. Figure 10.7 shows four power spectra at differ-

ent delays. The DC component and the peak are obvious in each case, and the signal

is easily identifiable out to 60 µm. At larger path differences the peak rapidly deterio-

rates until at 100 µm it is barely visible above the noise. Figure 10.8 is a composite of

many similar measurements with each peak representing a different power spectrum.

The path difference was stepped from -60 to +60 µm. Measurements were therefore

taken either side of zero path difference, and ‘negative’ spatial frequencies would be

meaningless, but the data are plotted this way to indicate the path difference was

negative. Subsequent data sets were then taken to show path differences from +60 to

120 µm.

The effect of integrating the power spectra was also examined. The number

of frames was increased and records of the power spectra were taken. This was done

with and without the remapping of photon data. It can be seen in Fig. 10.9 that if

enough frames are integrated the noise disappears and the signal can be seen at spatial

frequency of 12, corresponding to a delay of 24 µm. There is also a peak at 96 which

is due to alignment artifacts in the camera. This peak is removed when neighboring

pixels are averaged, as in Fig. 10.10, and the signal peak now appears at a spatial

frequency of 24, as expected. The calibration from spatial frequency to delay depends

on the bandwidth and extent of the pixel averaging, as was discussed in §6.1.3.
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Figure 10.7: Examples of the fringe peak for increasing pathlength. The distances
which are indicated in the diagrams are with respect to the center of the piezo
motions and not with respect to the location of zero path difference.
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Figure 10.8: Fringe measurements made using a tungsten lamp within the stellar
interferometer. The data have been averaged to 128 pixels and zero padded prior
to being transformed. The height of the peaks is variable due to tilts induced by
air motions within the enclosure of the path compensator.
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Figure 10.9: The above data sets were obtained using SUSI in autocollimation
from the beam reducing telescope. A tungsten lamp was used as a source, and
various numbers of frames were integrated. In these cases there was no attempt
to remap the data for dispersion, and the data were processed from the detector
coordinates. An artifact at a spatial frequency of 96 can be seen, and also a
much smaller one at 64. Each of the data sets has been scaled down by increasing
powers of 2, so that they all appear to have the same total power.
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Figure 10.10: Here, data from neighboring pixels have been averaged together.
There are then 128 pixels of information padded with 128 zeros. These obser-
vations were done using SUSI in autocollimation, using a tungsten lamp as an
artificial star. The artifact at a spatial frequency of 96 is now absent, although
the one at 64 is still visible.
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Figure 10.11: The mean noise level as a function of the number of photons per
frame. The noise level in DFT amplitude estimates is predicted according to the
Rayleigh distribution, as discussed in §7.3. The straight line is the theoretical
model, 〈Z〉 = (πσ2/2)1/2, where 2σ2 = Nt the number of photons-per-frame.
This agrees well with the measurements down to light levels below 10 photons-
per-frame.

The mean noise level of amplitude estimates

Measurements were also made of the mean noise level as a function of the number of

photons-per-frame. The data processor calculates DFT amplitudes from the channeled

spectrum, and according to the theory outlined in §7.3 the noise should follow a

Rayleigh distribution.

SUSI was therefore set up in autocollimation, but the path compensating car-

riage was positioned so that no fringes would be present. A tungsten lamp was used

with neutral density filters, and the frame time was varied to reduce the number of

photons-per-frame. The results are shown in Fig. 10.11. The solid line represents

the theoretical model, 〈Z〉 = (πσ2/2)1/2, where 2σ2 = Nt is the number of photons-

per-frame. This is the mean value of the Rician distribution when ρ = 0, shown in
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Eq. 7.12. The data from the measurements is indicated in the figure. It can be seen

that even down to levels of less than 10 photons-per-frame, the measurements agree

remarkably well with the theory.

10.3 Conclusion

Figure 10.7 showed the response of the group delay processor to fringes of increasing

path-difference. Under ideal conditions the peak would be 0.50 of the DC level. This

was shown previously by the model of Eq. 5.1 and the illustrations in Fig. 5.2. How-

ever, in the experiments the peak was observed to be closer to 0.15 of the DC level.

The difference is due to the assumptions made in Eq. 5.1.

• The spectrum of the tungsten lamp and the wavelength sensitivity of the camera

results in a non-uniform envelope of the channeled spectrum. The Fourier trans-

form of this envelope is convolved with the fringe peak and therefore reduces its

height.

• The fringes were mapped with a non-constant dispersion across the detector. It

was found that re-mapping to correct for dispersion did not significantly improve

the sensitivity, despite the predictions outlined in §6.2. In practice, a straight

averaging to 128 pixels produced better tracking. This removed the camera

artifact at a spatial frequency of 96 and with zero padding improved the delay

sampling to intervals of 1.0 µm.

Moreover, the visibility of the fringes will always be less than 1.0, due to diffraction

effects, slight imperfections in the optics, and seeing within the enclosure.

The difference between the actual and ideal response can therefore be taken into

account when predicting the limits of performance, now using a visibility amplitude

of 30% or .15/.50 in the equation for the probability of tracking loss, Eq. 7.20. This

implies that active tracking would probably not be possible at light levels lower than

10 photons per frame, because more than 1000 frames would be necessary to guarantee

tracking. If the frame times are several milliseconds long then the integration time

required is several seconds for a stationary delay.
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Stellar Observations

In this chapter observations of α CMa, α PsA, and α Eri are presented, and tests of

the delay tracking servo are shown. These tests show the first close-loop operation of

a fringe tracking servo based on group delay tracking.

The path-difference detected by delay tracking contains two components: a

group delay caused by the atmosphere, and path-differences caused by tracking errors

of the carriage. The carriage errors are measured independently by the laser metrology

system at SUSI, and are illustrated for comparison with the fringe tracking.

11.1 Observations of α CMa

α CMa was observed in April 1993. The changing path difference was easily detected

with the camera and processor, but at that stage in the commissioning of the path

compensator the path motions were dominated by tracking errors of the carriage.

The path compensator prior to May 1993

All observations taken prior to May 1993 suffered large excursions in the path correc-

tion. Only the speed of the carriage motors was adjusted in the servo with the laser

metrology system, and the piezos at the catseyes had not yet been implemented. The

path errors were a function of carriage speed and would exceed amplitudes of 50 µm

at the higher rates. Some examples are illustrated in Fig. 11.1. These were typical of

the path errors that existed when α CMa was observed.

158
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Figure 11.1: The position errors of the optical pathlength compensator as a func-
tion of the speed of the path compensating carriage. These measurements were
made by the metrology system. The plots are for carriage velocities of -101 µm/s
and -200 µm/s.
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The observations

α CMa was observed on two nights. A 5 m baseline was used, the apertures were

30 mm in diameter, and the seeing conditions during the observations were between

1.0 and 1.3 arcseconds. Frame times of 2.8 ms produced data rates of 50–55 photons-

per-frame, and integrations of 20 to 32 frames were used (values of a between 243 and

248). The data were averaged to 128 pixels and padded with 128 zeros before being

Fast Fourier Transformed.

The location of the peak in the power spectrum was recorded every fifth frame

for up to 30 seconds and was displayed in real-time on an oscilloscope. Records of the

carriage motions were made concurrently and the two data sets are shown overlaid in

Figs. 11.2, 11.3, and 11.4. The spectrum of α CMa that was detected by the PAPA

camera is shown in Fig. 11.5.

Each of the small crosses in Figs. 11.2–11.4 represent the location of the peak

in the power spectrum. In each case the dominant component of the pathlength

change is due to the motions of the carriage, with residual differences on a scale of

5 µm rms: these differences are what would be expected from the effects of atmospheric

turbulence on a 5 m baseline. In the upper graph of Fig. 11.2 there are occasions where

the number of fringes drops below the lower threshold and there appear ‘plumes’ of

tracking loss: this can be seen at 0 and 4 seconds. The signal to noise ratio in these

plots is not high. Sample power spectra, taken at times when fringes were detected,

are shown in Fig. 11.6. In each case the location of the fringe is easy to identify, but

is present on a broad pedestal of noise.
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Figure 11.2: The path-difference changes observed with α CMa on April 3, 1993.
The solid line in each graph represents the position of the carriage as measured
by the laser metrology system. The small crosses indicate the location of the peak
in the power spectrum of the fringes. There are 2000 peaks recorded in each plot.
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Figure 11.3: Further traces of the path-difference changes observed with α CMa
on April 3, 1993.
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Figure 11.4: Path-differences observed with α CMa on April 4, 1993.
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Figure 11.5: The spectrum of α CMa obtained as a cross section of the previous
PAPA camera image. The top spectrum shows the complete 256 pixels. The
bottom shows the effect of averaging neighboring pixels together. For all obser-
vations of α CMa the data were averaged in this way as it arrived. The Hβ line
at 486.1 nm is visible as an absorption feature near the center of the spectrum.
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Figure 11.6: These plots are representative of the spatial frequency spectra which
were used to track the group delay that was illustrated in Figs. 11.2–11.4.
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Figure 11.7: The position errors of the optical pathlength compensator in Septem-
ber 1993, after changes to the laser metrology system. These measurements were
made by the metrology system only. The plot is for a carriage velocity of 38 µm/s
which was the highest velocity used for observations of α PsA and α Eri. The
carriage speed is slower than for the observations of α CMa, because these stars
were closer to transit when observed.

11.2 Observations of α PsA and α Eri

The stars α PsA and α Eri were observed in early September 1993, and since April

the carriage and metrology servo had been markedly improved; atmospheric effects

now dominated the path variations.

The path compensator in September 1993

The performance of the path compensator was improved through the work of Andrew

Booth and Stephen Owens. Between May and August the electronics for both metrol-

ogy counters were rebuilt, the clock for the metrology servo was sped up to a 2 ms

period, and the piezo mirrors on the carriage were included in the servo loop. This

allowed the path compensator and metrology system to servo with rms path errors of

only 0.1 µm. The carriage errors that existed in September are shown in Fig. 11.7.

The ∼1 µm spikes are not real, but are generated by bit errors in the metrology

electronics. Because the delay tracking had a resolution of 2 µm, any changes that

could be resolved could not be caused by the carriage, and the remaining changes were

therefore due to the atmosphere.
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The observations

Each observation used a 5 m baseline and aperture diameters of 60 mm, under condi-

tions where the seeing varied between 1.5 and 1.7 arcseconds. A bandwidth of 110 nm,

centered on 495 nm, was imaged on the PAPA camera and its 256 pixels were averaged

to 128. The resolution in delay was therefore 1/∆κ = 2.10 µm, and zero padding with

128 zeros allowed the delay to be sampled at intervals of 1.05 µm.

Observations of α PsA

The observations of α PsA are shown in Figs. 11.8 and 11.9. As before, the power

spectra of the channeled fringes were integrated recursively, and the maximum in the

integrated spectrum was recorded after every fifth frame (every 20 ms when using

a 4 ms frame time). The maxima are indicated by the small crosses in each graph

and 1500 points are shown for 30 seconds of data. With α PsA, frame times of 4 ms

produced 22–26 photons-per-frame.

The motion of the delay can be traced through each plot. The peak-to-peak

changes are between 12 and 18 µm, and occur over timescales of approximately 8

seconds. Short term fluctuations of 5 µm per second are common, and are occasionally

sustained for two or three seconds.

Observations of α Eri

For the observations of α Eri frame times of 4 ms were again used and an average of

50 photons-per-frame were observed. Traces of the fringe motion are shown in Figs.

11.10, 11.11, and 11.12. In each case the observed fringe motions were similar to those

seen with α PsA, but the signal-to-noise ratio is now improved because of the higher

count rate. This can be seen by comparing Fig. 11.10 with the previous plots.

In Figs. 11.11 and 11.12 the fringe motions have been filtered to remove the

noise. The upper plots in each figure show the raw data that was detected by the

Max-find module in the processor. The traces are now drawn so that all data points

are connected by lines: this better illustrates the effect of the filtering. The tall spikes

are due to the noise peaks which appeared as outliers in the previous traces. The

lower plots are the same data after filtering by the software. Not only has a pre-filter

been used to remove the noise events, but the data have been smoothed as well. It

can be seen by comparing the upper and lower plots that the motions of the fringe

have been faithfully reproduced. The discontinuities in the lower plots show instances

where the tracking was lost; a 0 was then recorded to signal that no information was

available.
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Figure 11.8: The group delay wander observed with α PsA on Sept. 2, 1993. The
metrology errors were only a fraction of a micron and did not contribute to the
path motions visible in these graphs. These are traces of fringe motion due to
atmospheric turbulence. The small crosses indicate the location of the peak in
the power spectrum of the fringes. An aperture diameter of 60 mm was used with
frame times of 4 ms and seeing conditions of 1.5 arcseconds. The recursion used
a filter constant of a=248, equivalent to summing 32 frames and required 3 FFT
scalers. The carriage speed was 16 µm/s.
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Figure 11.9: Group delay wander observed with α PsA on Sept. 3, 1993. These
are traces of fringe motion due to atmospheric turbulence. The upper figure used
a recursion equivalent to summing 51 frames (a=251) with a frame time of 4 ms.
The lower figure used 28 frames (a=247) and a frame time of 8 ms. In each case 3
FFT scalers were used. The speed of the carriage was 17 µm/s, and the aperture
size was again 60 mm in diameter. The seeing was 1.2–1.5 arcseconds.



170 CHAPTER 11. STELLAR OBSERVATIONS

Figure 11.10: Fringe motions observed with α Eri on Sept. 2 and 3, 1993. In both
cases a 60 mm aperture was used with a frame time of 4 ms, 4 FFT scalers were
enabled, and the seeing conditions were 1.5–1.6 arcseconds. The upper figure
used 64 frames (a=252) and the lower used 32 (a=248). The trace of the carriage
motions, shown in Fig. 11.7, were taken at the same time as record shown in the
lower figure.
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Figure 11.11: Filtered fringe motions observed with α Eri on Sept. 4, 1993. The
upper figure shows the raw data as processed by the hardware’s ‘Max-find’ mod-
ule. The scattered noise that appeared in previous records now appears as sharp
spikes since the data points have been drawn here with connecting lines. The
lower figure shows the same data after the spikes have been removed and the
delay filtered, as discussed in Chapt. 9. The discontinuities in the lower graph
are intentional: a delay of 0 is sent to the carriage servo when the tracking is lost.
64 frames were integrated (a=252) with a frame time of 4 ms and 4 FFT scalers
were used. The seeing was 1.6 arcseconds. An aperture diameter of 60 mm was
used.
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Figure 11.12: Filtered fringe motions observed with α Eri on Sept. 4, 1993. This
trace was observed under conditions that were the same as with the previous
example.
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11.3 The Path Compensating Servo

Preliminary tests with the fringe tracking servo were carried out on September 7, while

observing α Eri. The servo was designed to track in an offset-mode, with between five

and ten fringes across the detector. This is because when there are a small number

of fringes their detected visibility is higher, although when there are less than five the

tracking signal becomes lost in the low frequency structure of the stellar spectrum.

At zero pathlength the fringes disappear entirely.

The servo equations were added to the program carservo by Andrew Booth.

This program is responsible for the transfer of data between the computers that deter-

mine a star’s position, generate rates for the path compensating carriage, and monitor

the feedback from the laser metrology system. The test servo was a proportional in-

tegrating controller: the correction was proportional to the input, was responsive to

long term drifts, but did not contain a damping term. The group delay estimates were

read by carservo every 80 ms, which was adequate because resolvable path changes

would take place over hundreds of milliseconds.

Two servo equations were required: a positive and a negative servo. The

number of fringes in the channeled spectrum only determines the distance from zero

path-difference, but not whether the error is positive or negative. It cannot indicate

whether the observations are taking place before or after the peak in the coherence

envelope. If the wrong servo were chosen then small errors should cause the carriage

to drive away from the offset position. In practice this was found to be true in every

case, but its results were different depending on the initial conditions. There are two

cases to consider:

1. If the path-difference was above the tracking offset, then turning on the wrong

servo would simply increase the path-differences and drive the carriage further

out on the coherence envelope. In these cases the number of fringes would

increase monotonically, and the tracking would indeed be lost.

2. If the path-difference was less than the tracking offset, then turning on the

wrong servo would still drive it away from the offset position, but it would drive

it towards zero path-difference, and then over the top of the coherence envelope.

Once the path-difference went through zero and changed sign, then the sense of

the servo would be correct. The servo would search for the correct offset and

begin tracking there.

Numerous time during the tests, it was observed that if the sense of the servo was

changed, that the servo would travel over the top of the delay curve and lock onto the

offset at the other side.
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Figure 11.13: Test of the fringe tracking servo with α Eri on Sept. 7, 1993. The
location of the delay was read by the servo which controls the path compensating
carriage. For these tests there was no damping in the servo equation; only the
feedback constant was adjusted. Shown here and on the following page are records
of the pathlength change as a function of the feedback constant. It is obvious from
these that although the servo functions, the feedback constant is too high in every
case.
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Figure 11.14: Test of the fringe tracking servo with α Eri on Sept. 7, 1993. As the
feedback constant is increased the amplitude of the pathlength change increases.
Further tests are necessary to properly tune the servo.
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The tests of the servo are shown in Figs. 11.13 and 11.14. The response of

the group delay tracking is shown for increasing values of the feedback parameter.

It is obvious from these figures that the servo had locked onto the fringe, but the

feedback parameter was too high in every case, and closing the servo loop caused the

path-difference to oscillate. Unfortunately, tuning it required more time than was

available, and poor weather brought the observations to a close.

11.4 Conclusion

The emphasis of both the laboratory experiments and the stellar observations has been

to evaluate the performance of active fringe tracking. The results indicate that for

this to be successful, the observations typically require 20 or more photons-per-frame

and a recursive integration of 32 frames. With half as much light, it is still possible

to locate the delay in moments of good seeing, but the probability of tracking failure

is much greater.

However, at higher light levels the changes in atmospheric phase-difference

could be identified, and the system was observed to work well. The motions observed

with α CMa closely followed the large path variations of the carriage, as can be seen in

the overlaid records taken with the metrology system. The fringe tracking servo was

closed for the first time, using observations of α Eri. Although its feedback parameter

remains to be tuned, the servo was observed to be robust and stable. Its behavior also

indicated that if the servo were started near the peak of the coherence envelope that

it would locate the proper tracking offset, whether the sense of the servo was positive

or negative.

The atmospheric phase changes observed with a 5 m baseline were consistent

with the predictions given in Chapt. 8. The peak-to-peak motions were 12–18 µm,

and changes of 5 µm/s were common over timescales of 1 or 2 seconds. These features

are what would be expected, and are also evident in the fringe motions presented by

Colavita et al. (1987), seen while observing α Aql with a 12 m baseline.



Chapter 12

Conclusions

This thesis has been devoted to the development of a new fringe tracking system, based

on group delay tracking with the Fast Fourier Transform. The work was divided into

four parts, beginning with an introduction to fringe tracking and a review of previous

work.

Part II described the PAPA camera that was commissioned for use in this

project. It was based on a model that had been constructed at Harvard University,

but which proved to have numerous design faults. These gave rise to image artifacts

that could not be corrected without redesigning the camera’s optics. The causes of

image artifacts were investigated: the descriptions of lens tolerances, alignment errors,

image folding, and the sum-of-all-masks represent original contributions by the author.

Based on this work, the design of a new camera was presented. It incorporated a new

mask-plate that was built to correct for vignetting artifacts, and a method of lens

mounting which obviated the need for tilt-plates. The success of the new detector was

then demonstrated.

Part III described the theory of group delay tracking and discussed its low light

level performance. The principal result was a derivation of the probability of tracking

loss. A figure of merit was also derived for the minimum number of photons required

to guarantee tracking. The fundamental limit of operation was shown to be reached

when there is at most 1 photon-per-frame: the spatial power spectrum of the fringes

is then featureless, and no information can be extracted. At higher light levels the

success of tracking depends on the visibility of the fringes, the resolution in delay, the

allowable coherence loss, and the speed of the path-changes. For moving fringes it

was shown that if the delay was changing at a constant rate, and a 110 nm bandwidth

were used then at least 9.7 photons-per-frame would be needed to guarantee tracking.

In Part IV the experiments were described. In the laboratory it was found that

sinusoidal pathlength changes were detectable at 10 photons-per-frame, providing the

amplitude was less than 20 µm and the period less than 2.5 Hz. At SUSI it was found
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that light levels of 20–50 photons-per-frame were required for active tracking during

observations of α PsA and α Eri. The fringe tracking servo was then demonstrated

with observations of α Eri. The observed limitations of group delay tracking are in

accord both with the theory derived in Part III and with prior simulations of Buscher

(1989), as noted in Chapt. 2.

There remain several improvements and extensions of this research which are

worth discussing. Therefore, in conclusion some suggestions for future work are given.

12.1 The PAPA Camera

The Detective Quantum Efficiency (DQE) of the camera could be improved using a

different image intensifier package. There are two well defined problems that need to

be addressed:

• The microchannel plate in the Varo 3603 tube has an open-area ratio of 57%,

and therefore blocks almost half of all photoelectrons that are generated at its

cathode. The detective quantum efficiency of the tube is reduced accordingly.

• The pulse-height distribution of photon events is a negative exponential, and it

is impossible to separate photon events from noise events. This is because the

microchannel plate is biased for night-vision operation rather than for photon

counting.

These limitations are common with other array detectors which use microchannel

plates for photon counting. There is active research in this field and it is likely that

a suitable solution will be found. Harvard had suggested using a hybrid combination

of intensifiers as an alternative. Although that approach may yet prove successful,

testing it was beyond the scope of this work. By this method, it is claimed that the

detective quantum efficiency could be increased by a factor of four, to 8 or 10%.

An improved DQE would extend the number of stars that could be actively

tracked with this system. The number of photons-per-frame that are detected by the

PAPA camera is shown in Fig. 12.1, where it is assumed that 120 nm of bandwidth is

used, from 430–550 nm, but with different aperture sizes and integration times. The

measurements of α PsA and α Eri were conducted with a 4 ms sample time and 60 mm

diameter apertures, and their magnitudes are indicated in the figure. A factor of four

improvement in sensitivity would mean that the same number of photons-per-frame

would be observed at a magnitude of 2.9 as were observed with α PsA.
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Figure 12.1: The number of photons-per-frame counted by the PAPA camera as
a function of stellar magnitude B. In each case the bandwidth is fixed to 110 nm,
but the aperture size and exposure time are different. The topmost line shows
the response for a 4 ms frame time, 60 mm apertures, and a Detective Quantum
Efficiency (DQE) four times greater than the present camera. The B magnitudes
of α PsA and α Eri are included for reference.
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Replacement lenses

The flat-field images of the PAPA camera would be improved if several of its array

lenses were replaced. The ability to correct for image artifacts was limited by the

quality of some lenses. They do not all image well over the full field defined by the

image tube. The poorest lenses were allocated to the coarsest masks to reduce the

number of alignment artifacts. The most noticeable errors could be corrected if the

lenses for the X1, Y2, and Y3 masks were replaced.

12.2 Group Delay Tracking

Time was only available for the initial testing of the fringe tracking servo. Changes

to the path compensating system, and other instrumental tests at SUSI precluded

further work. The next step would be to properly tune the servo and perform tests

at longer baselines.

The 80 m baseline at SUSI is the longest operational baseline of any existing

stellar interferometer, and within the next year baselines up to 160 m will become

available. No one knows how the atmosphere affects fringe motions at baselines longer

than 31.5 m, and there is clearly an opportunity with group delay tracking for a

significant contribution in this field. This work only became possible after the changes

to the path compensator in the later half of 1993, and has yet to be exploited.
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Appendix A

Photographs

Photo 1. The Sydney University PAPA camera, shown here on the ‘red’ table at

SUSI prior to installation. The silver box is the thermoelectric cooler which contains

the image tube. The collimating lens and lens-mask assembly are contained within

the A frames in the center, and the analog electronics are visible at the back. They

surround the photomultiplier tubes.

Photo 2. The Analog Electronics. There are three circuit boards in these electronics:

one board to condition the strobe signal, and one to latch the data in each of the

x and y axes. Again, the photomultipliers are hidden from view.

Photo 3. Close-up of the Lens-Mask Assembly. This and the following photograph

show different views of the lens-mask assembly. The collimating lens is on the left and

the array lenses are in the center. To the right the individual masks on the mask-plate

are visible.

Photo 4. Overview of the Lens-Mask Assembly. The collimating lens now appears

in the center and the output of the image tube is just out of view on the left. The

analog electronics are on the right.

183



184 APPENDIX A. PHOTOGRAPHS



Appendix B

Design of the Gray Coded Mask

Plate

The mask plate discussed in §4.2 is described in detail. This description is identical

to the one used to specify the masks for the manufacturer.

B.1 A Description of the Hexagonal/Square Array

The layout of the mask plate is shown in Fig. B.1. Each circle in the figure represents

the boundary of a mask. All circles are 18mm in diameter and have their centers

18mm apart so that they are touching. It is opaque in the space between circles and

also opaque in the area outside the circles. The mask boundaries, in some cases, could

have been square or hexagonal, but a circular boundary was chosen because it was

simpler to describe.

Within the circles there is a mask pattern which is different for each mask.

There are 17 different masks etched on a single glass plate. There is one strobe mask,

eight x masks, and eight y masks. The masks are arranged in five rows, with the

central three rows containing 13 masks in a hexagonal close-packed configuration.

There are two masks in the first row, and two in the fifth row, which are located

symmetrically in a square grid with their neighboring rows.

B.2 Mask Descriptions

The central circle of Fig. B.1 represents the strobe mask: it is completely transparent

within the boundary of that circle.
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Y1Y2

X5X6 X2X3

X7Y7 X1X0

Y5Y6 Y4X4

Y0Y3

STROBE

Figure B.1: The layout of the Gray coded masks. Note that the only masks that
are completely surrounded, are the three central masks: X7, Y 7 and the strobe.

The x masks and y masks are Gray coded to span an image that is 9984µm in

diameter. This image size corresponds to the inner 20mm diameter of the intensifier,

imaged with a magnification of .5 through the collimating lens and zoom-lens. It is

9984µm rather than 10000µm, since 256 divides evenly into 9984, and thus the mask

dimensions for each mask come out in microns rather than fractions-of-microns.

The 0 order mask divides the image in two; the 1st order mask has a central

clear stripe 4992µm wide, 1/2 of the image size; the 2nd order mask has a central

opaque stripe 2496µm wide, 1/4 of the image size; and so on until the 7th order

mask which has a central opaque stripe 78µm wide, 1/128th of the image size. The

corresponding pixel size on the mask is therefore 39µm, 1/256th of the image size, and

the pixel size at the image tube is 78µm. The masks are described in more detail in

the accompanying figures and table.

The masks are composed of alternating opaque and transparent stripes. The

boundaries of the x stripes are all parallel to each other, and the boundaries of the y

stripes are all parallel to each other. However, the y stripes are perpendicular to the

x stripes. The width of these stripes is dependent on the order of the mask; masks of

a higher order have smaller stripe widths—half the width of the previous order. The
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X0 Mask Y0 Mask

9 mm

18 mm

Figure B.2: The X0 and Y0 Masks: Half of the mask is opaque, as shown
above. For the X0 mask the boundary between opaque and transparent regions
is the diameter that runs vertically across the circle; it is transparent to the left
of the diameter, and opaque to the right. The Y0 mask is the same as the X0
mask, except that it is rotated 90 degrees counter-clockwise.

X1 Mask
Y1 Mask4992 µm

2496 µm

2496 µm

Figure B.3: The X1 and Y1 Masks: In the X1 mask there is one central stripe
which is transparent. That stripe is 4992µm wide, and is centered on the diameter
that runs vertically across the circle. The rest of that mask is opaque. The Y1
mask is the same as the X1 mask, except that it is rotated 90 degrees. The X1
and Y1 masks are both shown above.
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X2 Mask Y2 Mask

2496 µm

2496 µm

2496 µm

Figure B.4: The X2 and Y2 Masks: For the X2 mask the central stripe is
opaque and 2496µm wide, centered on the diameter that runs vertically through
the circle. On either side of that stripe there are transparent stripes, each 2496µm
wide. The rest of the mask is opaque. The Y2 mask is the same as the X2 mask,
except that it is rotated 90 degrees. The X2 and Y2 masks are depicted above.

x and y masks of a given order are identical, except that the y masks are rotated 90

degrees (counterclockwise) with respect to the x masks.

The masks are made over-sized. Although the image is only 10mm in diameter

the masks themselves extend to a diameter of 18mm. Having the masks oversized

makes the camera alignment easier: all masks are periodic, and so it doesn’t matter

what period is used as a reference in the alignment. The masks of order 0, 1, and

2 are not made entirely periodic because of the large period of their stripes. Masks

of order 3 and higher all have patterns which are made to extend to fill the circle in

which they are centered.

The width a of the stripes in each mask is given in table B.2 and depicted in

Fig. B.5.

Mask # Width of Stripes a

X3 & Y3 9984/8 = 1248 µm

X4 & Y4 9984/16 = 624 µm

X5 & Y5 9984/32 = 312 µm

X6 & Y6 9984/64 = 156 µm

X7 & Y7 9984/128 = 78 µm
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a a a a a aaaaaaa

a
2

a
2

CLOSE UP OF A HIGHER ORDER X MASK

Figure B.5: X and Y Masks of order 3, 4, 5, 6, and 7 : The x and y masks
of order 3, 4, 5, 6, and 7 may be described in the following manner: each of these
masks has a central stripe which is opaque; the central stripe is symmetric about
a diameter of the circle; clear and opaque stripes alternate across the submask;
clear and opaque stripes are of the same width in any one mask; the pattern that
describes a mask is extended until the boundary of the circle that bounds that
mask. The Y masks appear identical to the X masks except that they are rotated
90 degrees.

B.3 The Mask Plate

The full scale mask plate is shown in Fig. 4.2. The lower order masks were located

to shield against vignetting, as described in §4.2. The X7 and Y7 masks were placed

either side of the strobe. As can be seen in the design of the lens holder, Fig. 4.3,

there is no lateral access to these lenses. However, they were used as the reference in

the alignment and could be fixed in place after being focused.

The mask was manufactured by Precision Photomask Inc., 4950 Fisher St.,

Montreal, PQ, Canada, H4T 1J6. They defined it using their Optical Pattern Gen-

eration method, which can define structures as small as 3µm in size. This method

maintains an angular tolerance ±0.1◦, a position accuracy of ±0.6µm over a six inch

square area, and has a standard dimensional tolerance of ±1µm for structures larger

than 25µm. The mask was made using anti-reflection chrome deposited on sodalime

glass. The pattern is centered on a glass plate 4 inches square, and 0.09 inches thick.

They retain the master plate and will manufacture further copies upon request.



Appendix C

Alignment of the PAPA Camera

The images on each mask must all have the same magnification, and must all lie at

appropriate locations if the addresses are to be decoded correctly. This was discussed

at length in Chapter 3. The alignment procedure will now be presented.

C.1 Tilt Plates and Lens Rotation

There are two methods that have been used for displacing images to obtain an align-

ment: the rotation of tilt plates and the rotation of lenses. Tilt plates can be used to

laterally shift the image and move it in a circle. However, moving or rotating a lens

has the same effect without introducing image aberrations.

C.1.1 Tilt-plates

Tilt-plates were used in the design by Adaptive Optics Associates (1988). A tilt-plate

is a plane parallel plate of glass which is set at an angle within an optical system. If

a collimated beam passes through it then it will be shifted, or offset, in a direction

normal to its direction of propagation. The amount of offset ρ is dependent upon the

glass thickness d, the tilt angle θa, and the index of refraction of the glass ng.

ρ = d
sin (θa − θg)

cos θg
, with na sin θa = ng sin θg. (C.1)

Here na is the index of refraction of air, θg is the angle of refraction in the glass,

and the equation on the right is Snell’s law. We may also expand the sine term and

re-write the equation in the following form,

ρ = d cos θa (tan θa − tan θg) , (C.2)

also derived in by Smith (1990, §4.8).
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If a tilt-plate is placed the in a converging beam, between a lens and its image

plane, then it will shift the location of the image by the amount ρ. This effect has

been used in rangefinders and optical micrometers.

Unfortunately, tilt-plates will introduce aberrations in the image. The glass

not only shifts the focus laterally, but also displaces it further along the optical axis.

The rays in the converging beam that arrive at larger angles are displaced slightly

further along the optical axis, and this results in spherical aberration (Smith, 1990).

To a lesser degree there also exist other effects: chromatic aberration, astigmatism,

sagittal coma, and lateral chromatic aberration. Smith lists formulae to describe each

of these terms, and in each case the aberrations are shown to scale linearly with plate

thickness d.

In the Standley-Nisenson camera the following parameters were used: tilt angle

θa = 30◦, ng = 1.5, and plate thickness d = 1mm. If we assume that na = 1.0 then we

find that θg = 19.47◦, and so we obtain an offset radius of ρ = 194µm. The tilt-plates

were mounted at a fixed angle and were allowed to rotate through 360◦. It is the

rotation of the tilt-plates that provided the alignment.

If (x, y) were the coordinates of the incoming ray, then the coordinates of the

outgoing ray would be (x′, y′), where

x′ = x+ ρ cosϕ, y′ = y + ρ sinϕ, (C.3)

and ϕ is the angle of rotation chosen to obtain the proper alignment. Tilt-plates cause

both x′ and y′ to change at the same time. This, however, does not pose a problem

since a single mask serves only one coordinate axis; for an x mask the y offset doesn’t

matter, and for a y mask the x offset doesn’t matter.

C.1.2 Zoom-lens rotation

The same principle may be used in a slightly different way; if we rotate the zoom-

lenses then we find that the same range of adjustment is already available and that

the tilt-plates are unnecessary. The centration of the zoom lenses is not perfect: the

optical axes of the lenses do not necessarily match their mechanical axes, and so if the

lens is rotated around its mechanical axis then the image will move in a circle in the

image plane.

For the 75mm Rolyn Zoom lenses, working with a 150mm focal length colli-

mating lens, the range of adjustment, along either the x or y axis, ranged from ±80µm
(which was unusually small) to ±500µm, with more typical values around ±250µm.

The range is therefore typically larger than that offered by the tilt plates. It follows

that if the lenses are mounted correctly then the alignment may be performed without

the use of tilt plates. If they are omitted from the design then the image quality at
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the masks will be improved, the design of the camera will be simplified, and the total

cost will be slightly reduced. The Sydney University camera was aligned without tilt

plates.

C.2 Apparatus and Preparation

The alignment technique was briefly described by Papaliolios and Mertz (1982) in

their discussion of the first camera. A light source is used to illuminate selected masks

in the mask-plate, and their images are projected, or rather back-projected, into the

plane where the image intensifier output would be. If two masks are back-projected

in this way then it is possible to view their relative alignment, and therefore to adjust

them appropriately.

The apparatus consists of the following: the front end of the PAPA camera,

including the collimating lens and the lens-mask assembly; a slide projector to illumi-

nate the mask-plate; appropriate apertures at the mask-plate to select the masks that

will be illuminated by the projector; a fiber-optic faceplate mounted at the location

where the output of the image intensifier would be; and a travelling microscope used

to examine the images on the faceplate.

C.2.1 Autocollimating the main lens

Before the alignment, and before the lens-mask assembly is installed, the collimating

lens should be auto-collimated. This may be accomplished with the help of the face-

plate. If the faceplate is illuminated from the front end of the camera, and a mirror

placed beyond the collimating lens, then light reflected back into the lens will form

an image of the surface of the faceplate. When the lens is auto-collimating, then that

image will lie back on the faceplate. When the lens is focused properly it is possible,

with the aid of a microscope, to peer into the faceplate and see, as a return image,

the hexagonal fiber-bundles of the faceplate itself.

C.2.2 Lens-mask allocation

There may be some advantage in carefully choosing the placement of each lens. Al-

though all of the zoom-lenses should produce high quality images, and there should be

little difference between the best lens and the worst lens, in practice, however, some

lenses are better than others. Therefore the best lenses should be assigned to the

finest masks, the poorer lenses to the coarsest masks, and the worst lens to the strobe

channel. In this way the effect of bit errors will be minimized, since errors only occur

near mask boundaries, and the coarser masks have fewer mask edges.
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C.3 The Alignment Procedure

A preliminary adjustment should first be made: the X0 lens should be rotated so that

the back-projected image of the X0 mask is at some mean location with respect to all

other mask images. Had the image of the X0 mask been at its extreme range then

the alignment may be difficult, or impossible. It may take some time to determine the

best position, however once that is accomplished then the alignment can begin.

The X0 and X7 masks should each be projected in turn onto the faceplate. It

is then possible to adjust the lens of the X0 mask, with respect to the X7 image, until

the central edge of the X0 mask exactly splits an opaque stripe of the X7 mask. These

two masks are then aligned with respect to each other, and the center of the image is

defined for the x axis.

The remaining xmasks can be aligned using the X0 and X7 masks as references.

Figure 3.4 contains an alignment chart to aid in this. There are six alignment figures—

one for each mask from X6 to X1. In each case the given mask is flanked by the X0

mask to the right, and the X7 mask to the left, each in the proper alignment. The

thin dark horizontal lines indicate the location of pixel boundaries. All 256 pixels

are presented here. With these figures as a reference, the lenses of each mask can be

rotated in turn until the proper alignment is achieved. Using the travelling microscope

the periods of the X7 mask can be counted, with respect to the X0 mask, to insure

that each mask is located correctly. After the x masks have been aligned then the y

masks may be aligned in the same way.

It is now crucial that the image intensifier be correctly positioned. On instal-

lation its output surface must lie where the surface of the faceplate had been when

the alignment was conducted. It is also important to be able to check the alignment

with the image tube in place. This may be done in the following manner.

Set up the camera as it was for the alignment, but remove the faceplate and

replace it with the image intensifier. Install an opaque mask over the mask plate

having only two apertures: one at the X7 mask and one at the X6 mask. Illuminate

the X7 mask so that a back-projected image of that mask is formed where the image

tube should be. Then take a microscope and focus on the chrome surface of the X6

mask. You should see the X6 mask clearly defined, because you are looking at the

mask itself, and you should also see an image of the X7 mask, returned from the surface

of the image tube, if the image tube is near where it should be. The alignment and

image quality can be checked in this way. If the masks were aligned previously then

the alignment should be regained by moving the image tube axially. The best-focus

and the correct alignment should occur at the same time.

By choosing masks other than X6 it is possible to check the alignment of the

whole x axis. Similarly if the Y7 mask is used as a reference it is possible to check
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the y axis. This serves as the final test of the PAPA camera optics, and what you see

is what you get.

C.4 The Spectrum of the Image Tube Phosphor

The alignment should be carried out with the same spectrum of light emitted by the

phosphor of the intensifier. This would highlight any problems with the lenses and

yield a more accurate alignment. However, the P-47 phosphor, commonly used in

PAPA cameras, has a spectral distribution that is blue-purple. This is in a region of

the spectrum where the sensitivity of the eye is poor. Consequently, it would have been

difficult to perform a visual alignment with blue light. For that reason the alignment

of the Sydney University camera was done with white light.



Appendix D

List of Parts for the PAPA

Camera

D.1 Introduction

The camera at Sydney University had originally been one of the five built by Standley

and Nisenson (1989). It was dismantled, redesigned, and rebuilt for reasons described

in Chapter 3. When it was rebuilt, all of the purchased components, with the exception

of the mask plate, were re-used. This included the lenses, image tubes, thermoelectric

cooler, and photomultipliers. All of these items had been chosen at Harvard University

by Standley and Nisenson.

This appendix describes the purchased components and lists their sources in

the bibliography. It also lists the blueprints for the machined parts, with drawing

numbers quoted whenever possible. Some of the machined parts were reused, but

many were either discarded, modified, or re-designed. I have indicated the changes

that were made by placing symbols alongside the blueprint numbers. The symbols

have the following meaning:

⊗ The part was discarded.

2 The part was modified.

3 The part was re-designed.
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D.2 Camera Parts

D.2.1 1rst Generation 25mm Varo Tube

Specifications

Part No. 510-3024-310

Distortion Corrected

Fiber optic input and output

Photocathode S20 — extended red, highest possible QE

Phosphor X3

Resolution > 56 lp/mm

Equivalent Background Illumination (EBI) < 2.0 · 10−11 lumen/cm2

No bright spots or field emission

No dark spots > 0.001" diameter in central 22 mm dia

Regular fiber optics (Shear < 50 µm)

All other applicable parameters to MILSPEC

Photocathode response:

550 nm > 44 mA/W (QE > 10%)

800 nm > 20 mA/W (QE > 3.1%)

D.2.2 25mm MCP 2nd Generation Varo Tube, Model 3603

Specifications

Part No. 510-3697-368

S20 Photocathode — not extended red

Cathode sensitivity 12% minimum at 550 nm

Phosphor P47

No film on MCP

Resolution > 25 lp/mm

Equivalent Background Illumination (EBI) < 2.0 · 10−11 lumen/cm2

No bright spots or field emission

No dark spots > 0.001" diameter in central 22 mm dia

Regular fiber optics (Shear < 50 µm)

All other applicable parameters to MILSPEC
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Microchannel Plate (MCP) included in 3603 tube

Information only, not a part of specification

Single MCP with bias cut

Bias Angle 11◦

Pore size 8.9 µm

Pore centering 11.8 µm center to center

Open area ratio 57%

Exponential pulse-height distribution

D.2.3 Related Parts for Intensifiers

Machined Parts

1 Generic Mounting Bulkhead, J. Hazen

Fiber Optic Coupler

1 Incom Inc., Fiber Optic Faceplate; Numerical Aperture

0.66 with EMA, 6-8 µm, 40mm diameter x 10mm thick.

Cold Box for Image Intensifiers

1 Products for Research, TE334RF Water Heat Exchange

Thermoelectric Cooler

D.2.4 Camera Base

Machined Parts

1 PD 1023 Front Bulkhead

4 PD 1009 Block, Strut Mount

4 PD 1004 Main Strut 2

4 PD 1005 Invar Post, Collimating Lens Mount

1 PD 1010 Clamp, Collimating Lens Mount

1 PD 1011 Ring, Collimating Lens Mount

1 PD 1008 Tube, Collimating Lens Mount

1 PD 1016 Rear Bulkhead ⊗ 3

Collimating Lens

1 Isco - Göttingen, F 1.6/150mm - 5.91 in.

Cinelux Xenon lens.
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D.2.5 Lens-Mask Assembly

Machined Parts

1 PD 1015 Plate, Focusing Lens & Mask Mount ⊗ 3

1 PD 1014 Ring, Photomask Unit ⊗
2 PD 1019 Mount, Mask Adj. Screw ⊗
1 PD 1018 Ear, Mask Adj. ⊗
4 PD 1006 Invar Post, Focusing Lens Mount 2

1 PD 1007 Plate, Focusing Lens Mount ⊗ 3

21 PD 1012 Tube, Tilt Window ⊗

Zoom Lenses

21 Rolyn Optics Company, 35.0075 Variable focal length lens

75–80 mm focal length, adjustable

Grey Coded Mask Plate

Advanced Reproductions, Array of 21 Gray coded masks on 110 mm

diameter AR chromed glass plates, cut to 110mm diameter. ⊗

Precision Photomask Inc., Array of 17 masks described in Appendix B.

D.2.6 Camera Back End

Machined Parts

1 PD 1021 Plate, PMT Tube Mounting 2

1 PD 1013 Delrin Housing, PMT’s ⊗ 3

42 PD 1025 Lens & PMT Retainers ⊗
21 PD 1027 Field Stops, PMT Masks ⊗
4 PD 1017 Rear Strut ⊗
1 PD 1022 Rear Cover ⊗

Field Lenses

21 Edmund Scientific, P32,005 15mm diameter, 22.5mm focal

length, coated plano convex lenses.

Photomultiplier Tubes

21 Hamamatsu Corporation, R647-04 Photomultiplier Tubes.

Head-on type, 1/2 inch diameter, for photon counting.

Bialkali photocathode with peak response at 420 nm.

21 Hamamatsu Corporation, E849-36 Photomultiplier Sockets
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D.3 List of Mechanical Drawings

Jeff Hazen designed the machined parts for the Standley and Nisenson PAPA camera.

Most of the drawings listed here are his. Note that drawing PD 1002 does not exist;

it was a redesign of PD 1001 that was never used. The other drawings are those

of Products for Research which describe their Image Tube Cold Box and its rear

mounting plate. The symbols have meanings as indicated at the beginning of this

appendix.

Drawings by Jeff Hazen

1 PD 1001 Intensifier Potting Tube, Resdel Corp. ⊗
1 PD 1003 Flange for Potting Tube

4 PD 1004 Main Strut 2

4 PD 1005 Invar Post, Collimating Lens Mount∗

4 PD 1006 Invar Post, Focusing Lens Mount∗ 2

1 PD 1007 Plate, Focusing Lens Mount ⊗ 3

1 PD 1008 Tube, Collimating Lens Mount

4 PD 1009 Block, Strut Mount

1 PD 1010 Clamp, Collimating Lens Mount

1 PD 1011 Ring, Collimating Lens Mount

21 PD 1012 Tube, Tilt Window ⊗
1 PD 1013 Delrin Housing, PMT’s ⊗ 3

1 PD 1014 Ring, Photomask Unit ⊗
1 PD 1015 Plate, Focusing Lens & Mask Mount ⊗ 3

1 PD 1016 Rear Bulkhead ⊗ 3

4 PD 1017 Rear Strut ⊗
1 PD 1018 Ear, Mask Adj. ⊗
2 PD 1019 Mount, Mask Adj. Screw ⊗
21 PD 1020 Windows made of fused silica ⊗
1 PD 1021 Plate, PMT Tube Mounting 2

1 PD 1022 Rear Cover ⊗
1 PD 1023 Front Bulkhead

1 PD 1024 Main Cover ⊗
42 PD 1025 Lens & PMT Retainers†⊗
1 PD 1026 Access Cover ⊗
21 PD 1027 Field Stops, PMT Masks ⊗

1 Generic Mounting Bulkhead
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Products for Research Cold Box Drawings

1 TE333 + TE334 Overall Dimensions

1 55043.0040 Front Plate

1 55043.0050 Rear Plate

1 55043.0080 Rear Mounting Plate, Cooler

1 55043.0090 Rear Sleeve

† The lens and PMT retainers, PD 1025, were not machined. They were cut

from stock material.

* The curves indicated on these drawings are not functional, and were omitted

in the cameras made by CfA.

D.4 Notes and Comments

D.4.1 The Image Intensifiers

It had been intended to use both image tubes together, in the manner suggested by

Papaliolios et al. (1985) and Latham (1982). However, numerous engineering problems

precluded their use, and ultimately only a single Gen II tube was used.

D.4.2 The Collimating Lens

The collimating lenses were bought through Schneider Corporation of America, and

were made in Germany by Isco. They were designed for the projection of drive-in

movies: Cinelux means cinema-light. Understandably, that market has dried up, and

the lenses are no longer manufactured.



Sources of PAPA Camera Parts

VARO, Inc., Electron Devices Division, 2203 W. Walnut Street, P.O. Box

469014, Garland, Texas 75046-9014. Tel: (214) 487-4100, Fax: (214) 487-4265,

Telex: 163165 VAROI UT.

Incom Inc., 205 Chapin Street, Southbridge, MA 01550-0528. Tel: (617) 765-

9151.

Products for Research, 88 Holten Street, Danvers, Massachusetts 01923. Tel:

(617) 774-3250, Fax: (617) 245-1628, Telex: 94-0287 (PHOTOCOOL DARS).

Schneider Corporation, 400 Crossways Park Drive, Woodbury, New York 11797.

Tel: (516) 496-8500, Fax: (516) 496-8524, Telex: 960102.

Rolyn Optics Company, 706 Arrowgrand Circle, Covina, California 91722-2199.

Tel: (818) 915-5707, Telex: 67-0380.

Hamamatsu Corporation, 360 Foothill Road, Box 6910, Bridgewater, NJ 08807-

0910. Tel: (201) 231-0960, Fax: (201) 231-1539, Telex: 833-403.

Advanced Reproductions, 100 Flagship Drive, North Andover, MA 01845. Tel:

(617) 685-2911.

Precision Photomask Inc., 4950 Fisher St., Montreal, P.Q., Canada H4T 1J6.

Tel: (514) 737-7030. Fax: (514) 737-9893.

Edmund Scientific, 101 E. Gloucester Pike, Barrington, NJ 08007. Tel: (609)

547-3488. Fax: (609) 573-6295. Telex: 831-564.

Optical Radiation Corporation, 1300 Optical Drive, Azusa, California 91702.

Tel: (818) 969-3344, Telex: TWX 910-584-4851.
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Appendix E

The Prism Spectrometer

E.1 Prism Equations

The angle of deviation γ of rays leaving a prism is given by the relation

γ = θi + arcsin

[

(sinα)
(

n2 − sin2 θi
)1/2
− sin θi cosα

]

− α (E.1)

where θi is the angle of incidence of the light measured with respect to the normal of

the prism surface, α is the prism angle, and the index of refraction n is a function of

wavelength (Hecht, 1987). The rate of change of the angle of deviation as a function

of the index of refraction is therefore

δγ

δn
=

[

1−
{

(sinα)
(

n2 − sin2 θi
)1/2
− sin θi cosα

}2
]−1/2

n sinα

(n2 − sin2 θi)1/2
. (E.2)

If the spectrum is mapped onto an image plane whose coordinate in the direc-

tion of the dispersion is x, then by using a thin lens of focal length f the mapping will

be
δx

δλ
= f

δγ

δλ
, where

δγ

δλ
=
δγ

δn
· δn
δλ
. (E.3)

We could also express the mapping in terms of the wavenumber κ = 1/λ to obtain

δx

δκ
= f

δγ

δn
· δn
δλ
· δλ
δκ
, with

δλ

δκ
= − 1

κ2
. (E.4)

If we operate the prism at the angle of minimum deviation then the angle of

incidence θi is chosen so that

sin θi = n sin(α/2), (E.5)

where n is calculated at the center of the spectral band.
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E.2 Calibration of the Spectrometer

The spectrometer may be calibrated using the lines from a low pressure mercury

vapour lamp. If the spectrometer has a lens of focal length f , and x is a coordinate

in the image plane, and ρ is the number of pixels per mm across the detector, then

we may write the mapping from wavelength to pixel as follows:

p(λ) = p0 + ρf arcsin

[

(sinα)
(

n2 − sin2 θi
)1/2
− sin θi cosα

]

, (E.6)

where p0 is an offset to be determined in the calibration.

The prism used in the spectrometer was made of SF52 glass and has an index

of refraction given by a fifth order polynomial, here quoted from the Schott Glass

catalog.

n2 = A0 +A1λ
2 +A2λ

−2 +A3λ
−4 +A4λ

−6 +A5λ
−8, (E.7)

where λ is in units of µm and the coefficients for SF52 glass are A0 = 2.7576175, A1 =

−9.7069196 · 10−3, A2 = 2.9008907 · 10−2, A3 = 1.6834427 · 10−3, A4 = −8.6832245 ·
10−5, and A5 = 1.1266792 · 10−5. This equation is good for wavelengths between 400

nm and 750 nm to an accuracy of ±3 · 10−6.

The prism is first set up for operation at the angle of minimum deviation. This

is accomplished by slowly rotating the prism while observing the location of a line in

the spectrum imaged in the focal plane. The angle θi is then known. The scaling factor

ρf can also be found experimentally by observing two spectral lines, and calculating

their separation in pixels.

p(λ2)− p(λ1)
ρf

= arcsin

[

(sinα)
(

n2λ2 − sin2 θi
)1/2
− sin θi cosα

]

− arcsin

[

(sinα)
(

n2λ1 − sin2 θi
)1/2
− sin θi cosα

]

. (E.8)

As a final step the offset p0 can be determined from the location of a single spectral

line:

p0 = p(λ)− ρf arcsin

[

(sinα)
(

n2 − sin2 θi
)1/2
− sin θi cosα

]

. (E.9)

From our previous equation it is possible to determine the frequency at any

pixel. The only quantity that is wavelength dependent is n the index of refraction. n

can be written as follows:

n =

[{
1

sinα
sin

(
pn − p0
ρf

)

+
sin θi cosα

sinα

}2

+ sin2 θi

]1/2

(E.10)

and then we may find the wavelength by placing our value of n in the equation for

the index of refraction and solving for λ. For Cauchy’s dispersion formula this would

have been straightforward, but for the above polynomial it involves a zero search using

Newton’s Method (Press et al., 1992).



Appendix F

Spectrum Analysis and the DFT

The Discrete Fourier Transform (DFT) is an approximation to the continuous Fourier

transform. It operates with a number of implied assumptions that are important

to understand. It is the purpose of this section to give a brief overview of Fourier

transform theory and to provide some insight into the use of the Discrete Fourier

Transform. The Fast Fourier Transform (FFT) is an efficient mathematical technique

of evaluating the DFT. It will not be reviewed here. For more information on the

history and algorithm of the FFT the reader is referred to the volume of collected

papers edited by Rabiner and Rader (1972).

The Fourier transform is discussed in detail in numerous texts and papers;

see for instance Bracewell’s The Fourier Transform and its Applications (Bracewell,

1986). In the following section Bracewell’s notation, particularly the Π(x) and III(x)

functions, will be used, but the form of the Fourier transform will be in keeping with

the discussions contained in Bergland (1969), and Kay and Marple (1981). Here we

will introduce the transform as a basis of discussing the DFT.

F.1 The Fourier Transform

The time varying function x(t) can be expressed as a sum, or integral, of sine and

cosine waves, exp(j2πft), of different frequencies f , each with different amplitudes

|X(f)|, and phase lags argX(f). The function X(f) is complex valued, and is said to

be the frequency domain representation of x(t). Both x(t) and X(f) should be viewed

as alternate representations of the same function. The Fourier transform relationship,

relating these two, is as follows:

X(f) =

∞∫

−∞

x(t) e−j2πft dt and x(t) =

∞∫

−∞

X(f) ej2πft df
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X(f) can then be understood as the amplitude and phase derived from the projection

of x(t) onto a wave exp(−j2πft) of frequency f . It is important to note that x(t)

and X(f) are continuous functions which may be of infinite extent in their respective

domains.

The squared modulus of the Fourier transform |X(f)|2 is often termed the

spectrum of x(t). This represents an Energy Spectral Density (ESD), and if it is time-

averaged it becomes the Power Spectral Density (PSD). As well, the Wiener-Khinchin

theorem, applied to a function x(t), relates its autocorrelation Rxx(τ) to its PSD (Kay

and Marple, 1981).

F.2 Some Useful Functions and Fourier Transforms

The Discrete Fourier Transform can be modelled in terms of a continuous Fourier

transform by using appropriate functions and relationships, which will now be re-

viewed.

F.2.1 Fourier transform relationships

If h(t) and H(f) are Fourier transform pairs, then we may express that relationship

as follows:

h(t)⇀↽ H(f)

If g(t) and G(f) are also transform pairs, g(t) ⇀↽ G(f), then the following relationships

are true:

h(t/a) ⇀↽ |a|H(fa)

h(t− a) ⇀↽ e−j2πaf H(f)

h(t) + g(t) ⇀↽ H(f) +G(f)

h(t) ∗ g(t) ⇀↽ H(f)G(f)

h(t) g(t) ⇀↽ H(f) ∗G(f)

where the asterisk ‘∗’ is used to denote a convolution.

h(t) ∗ g(t) ≡
∞∫

−∞

h(τ) g(t− τ) dτ. (F.1)



206 APPENDIX F. SPECTRUM ANALYSIS AND THE DFT

F.2.2 The Rectangle function, Π(t)

The rectangle function Π(t) is zero everywhere except for a period of unit length near

the origin, where it is of unit height.

Π(t) =

{

0, |t| > 1/2

1, |t| < 1/2

It is most often seen in a product with other functions, so that those functions will

then have non-zero values only over a given period.

Π

(
t

∆t

)

h(t) =

{

0, |t| > ∆t/2

h(t), |t| < ∆t/2

The Fourier transform of the rectangle function is the sinc function.

Π(t)⇀↽ sinc(f), where sinc(f) =
sinπf

πf
(F.2)

Therefore a function h(t) that is truncated by the rectangle function will have its

spectrum smoothed, or convolved, by a sinc function.

Π

(
t

∆t

)

h(t) ⇀↽ |∆t| sinπf∆t
πf∆t

∗ H(f)

F.2.3 The Sampling or Replicating function, III(t)

The sampling function III(t), or Sha function, is an infinitely long series of delta

functions, where each delta function has the property

δ(t− n) =
{

1, t = n

0, otherwise

and is located at regular intervals in t.

III(t) =
∞∑

n=−∞

δ(t− n)

1

∆t
III

(
t

∆t

)

=
∞∑

n=−∞

δ(t− n∆t)

Any function that is multiplied by the III(t) function becomes sampled, so we may

write
1

∆t
III

(
t

∆t

)

h(t) =

{

h(t), t = n∆t

0, otherwise

The sampling function is its own Fourier transform,

III(t) ⇀↽ III(f).

Therefore, any function that is multiplied by the III(t) function, that is to say sampled,

has a spectrum which is replicated at regular intervals in frequency space; a spectrum

that is periodic.
1

∆t
III

(
t

∆t

)

h(t) ⇀↽ III (f∆t) ∗ H(f)
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F.3 A Note on Sampling Theory

If the function h(t) is bandlimited to a frequency of fw then we can write

h(t) ⇀↽ H(f)

H(f) = Π

(
f

2fw

)

H(f)

where H(f) has positive and negative frequency components as high as fw. We may

completely reconstructed h(t) from samples taken at intervals of

∆t =
1

2fw
,

where the frequency 2fw is known as the Nyquist sampling frequency, and the recon-

struction is described by Shannon’s sampling theorem. A tutorial on sampling theory

is given by Jerri (1977); the following is an illustration using Fourier transform theory.

F.3.1 The reconstruction of a sampled signal

The sampling theorem may be illustrated as follows: A function h(t) that has its

spectrum truncated by the rectangle function will be smoothed, or convolved, by a

sinc function.

2fw
sin 2πtfw
2πtfw

∗ h(t) ⇀↽ Π

(
f

2fw

)

H(f).

We know that sampling in the time domain will cause a periodic replication of the

spectrum in the frequency domain. If the sampling frequency is at least 2fw then the

replicated spectra will be non-overlapping, and that part of the resultant spectrum

which lies in the interval of −fw < 0 < fw will represent the true spectrum of the

(unsampled) signal. The sampling and its effects in the frequency domain may be

written as

1

∆t
III

(
t

∆t

) [

2fw
sin 2πtfw
2πtfw

∗ h(t)
]

⇀↽ III

(
f

2fw

)

∗
[

Π

(
f

2fw

)

H(f)

]

where ∆t = 1/(2fw). The sampled function fully reproduces the bandlimited spec-

trum, since we have

III

(
f

2fw

)

∗
[

Π

(
f

2fw

)

H(f)

]

= H(f), −fw ≤ f ≤ fw.

So, although sampling makes the spectrum periodic it is still possible to reproduce the

original signal by putting the data through a low pass filter whose cut-off frequency

is fw.
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F.4 The Discrete Fourier Transform

The Discrete Fourier Transform is an approximation to the integral Fourier transform.

The DFT requires that both the time domain and frequency domain functions be

represented by a series of samples that are of finite duration. We therefore replace

x(t) by the series of samples xn where n is an index which numbers the samples from 0

to some large number N−1; the samples being taken at regular intervals ∆t apart. We

also replace X(f) by the series of samples Xm, where m is an index whose maximum

value is the integer N − 1, and the samples lie at intervals of ∆f = 1/(N∆t). We can

now write the variables t and f as

t = n∆t, n = 0, 1, 2, ..., N − 1 and f =
m

N∆t
, m = 0, 1, 2, ..., N − 1

and the product ft, which appears in the Fourier transform integral, becomes

ft =
nm

N
.

The Discrete Fourier Transform is written as follows:

Xm = ∆t
N−1∑

n=0

xn e
−j2πnm/N

xn =
1

N∆t

N−1∑

m=0

Xm e
j2πnm/N

In most representations of the DFT the term ∆t is dropped, but it has been included

here for clarity. The DFT analog of the Energy Spectral Density is known as the

Periodogram.

Pm =
1

N∆t
|Xm|2

The spectrum represented by |Xm|2 is no longer the true spectrum |X(f)|2, but rather
an approximation. It is important to understand how these two functions differ.

F.5 Artifacts Produced by the DFT

Let us now represent the differences between the integral transform and the discrete

Fourier transform using the rectangle and sampling functions discussed earlier. It

must be remembered that the function x(t) was truncated and sampled, to produce

xn, before it was transformed. The truncation means that the time series has an

abrupt beginning and an abrupt end, and because we have sampled x(t) the space

between the samples is assumed to be zero valued. We have changed x(t) in the

following way:

x(t) −→
[

Π

(
t

N∆t

)

︸ ︷︷ ︸

windowed

1

∆t
III

(
t

∆t

)

︸ ︷︷ ︸

sampled

x(t)

]

∗ III

(
t

N∆t

)

︸ ︷︷ ︸

replicated

,
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where the quantity within the square brackets is the truncated and sampled version

of x(t). The Sha function outside of the brackets insures that the transform of this is

sampled at the correct intervals in the frequency domain; the DFT models the data as

if it were composed of frequency components that are harmonically related, where the

highest harmonic is the (N/2)th. This implies that the new version of x(t) is periodic

in time, with a period of N∆t. The frequency domain equivalent of x(t) therefore

becomes

X(f) −→
[

N∆t
sin(πfN∆t)

πfN∆t
︸ ︷︷ ︸

smoothed

∗ III (f∆t)
︸ ︷︷ ︸

replicated

∗X(f)

]
1

N∆t
III

(
f

N∆t

)

︸ ︷︷ ︸

sampled

The Fourier transform represented here is understandably different from X(f). All

of these alterations produce artifacts which appear in the spectrum, and give rise to

effects known as aliasing, spectral leakage, and the picket-fence effect. They require

some explanation, but let us first comment on resolution and bandwidth.

F.5.1 Resolution and bandwidth

Resolution in a spectrum is a measure of the ability to distinguish between two neigh-

bouring spectral lines of equal intensity. In a DFT the resolution is given by the

reciprocal of the extent of the samples in the time domain, ∆fw = 1/(N∆t). The

sampling rate determines the bandwith of the spectrum. If the data was sampled at

intervals of ∆t, then the bandwidth in the spectrum, the highest frequency component

that should be present, will be f = 1/(2∆t).

F.5.2 Aliasing

The DFT produces the frequency components Xm up to a value of m = N/2 corre-

sponding to half the sampling frequency, and it is assumed that no higher frequency

components exist. If they do then they will be seen, after detection, to oscillate at a

lower frequency, and will be summed with the true frequency components that already

exist there. This effect is known as aliasing. It is therefore imperative that the signal

x(t) be filtered so that this does not happen; otherwise power will appear folded back

to lower frequencies, confusing the interpretation of the spectrum.

F.5.3 Spectral leakage

The DFT uses a set of orthogonal basis functions to model an arbitrary time varying

function x(t). These basis functions are waves of the following form: exp(j2πnm/N),

where m is an integer, m/N represents the wave’s frequency, and n is an integer that

increases along the time axis. These frequencies are therefore harmonically related.
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The projection of x(t) onto these functions yields the coefficients Xm for each value of

m. If x(t) happens to be a wave of a single frequency that matches the frequency of

a basis function, then the projection will fall on one function only; all other functions

will have coefficients that are identically zero. If, on the other hand, x(t) is a wave of a

single frequency which does not match any of the basis functions, but has a frequency

that falls between harmonics, then its projection will yield non-zero coefficients for

every function. This is known as spectral leakage.

It can be understood in another way. The DFT forces the time series to be

periodic, and the beginning and end of the series will meet each time the series is

repeated. This wrap-around discontinuity gives rise to frequency components that

would not exist in the integral transform X(f). It means that if the sampled function

is not periodic over the length N∆x, implying that there exist frequency components

that are not sampled, then the power in those components will be divided amongst

the nearest neighbouring harmonics.

Spectral leakage is an artifact of the truncation and windowing. Truncation

is equivalent to a multiplication by a rectangle function Π(x). A time series that is

multiplied by Π(x) has a spectrum that is convolved by sinc(f). If the spectrum is

sampled then this convolution may spread frequency information across neighbouring

samples. The amount of leakage depends of the sidelobe structure of the convolving

function. If the data sets are tapered, or windowed, towards the beginning and end of

the series, then it is possible to reduce the sidelobe levels, but always at the expense

of resolution. Windowing effectively reduces the length of the data set, throwing away

information, and the resolution is therefore reduced. An extensive review of the use

of window functions is given by Harris (1978).

F.5.4 The picket-fence effect

Let us assume that x(t) is a single sinusoid, whose frequency we can change to any

frequency we wish, in a continuous fashion. Spectral leakage causes the power of that

sinusoid to be distributed amongst neighbouring harmonics (values ofm corresponding

to Xm) when its frequency lies between harmonics. When the frequency of x(t)

is increased through several harmonics its peak height will appear to increase and

decrease. It peaks at the harmonics where there is no spectral leakage, and reaches a

minimum value half-way between them, where the leakage is the greatest. This ripple

in the spectrum has been called the picket-fence effect.
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Figure F.1: The picket-fence effect: These illustrations show how the picket-fence
effect alters the power-spectrum. The spectrum is sampled at the locations Xm

where the curves peak. In the top diagram there is no zero-padding and the
spectrum is sampled in intervals of ∆s = 1. At frequencies between samples the
power appears to drop off rapidly. When the length of the data set is doubled by
zero-padding, then the response is that shown in the middle figure. The ‘filter’
at each sample retains the same shape, but the samples move closer together. In
the bottom figure the data set has been extended to four times its original length
through zero-padding, and the power drop is negligible.
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If the time series x(t) is artificially extended with samples that are zero valued—

a procedure called zero-padding—then the DFT will interpolate the frequency com-

ponents that lie between the original harmonics. This will reduce the picket-fence

effect, but will not increase the resolution of the spectrum; the new values simply

fill-in further values of an already smoothed function. The only way to increase the

resolution is to increase the extent of samples of x(t). The picket-fence effect, and the

effect of zero-padding are illustrated in Fig. F.1.



Appendix G

Wave Propagation in Random

Media

The theory of wave propagation through weak turbulence will be reviewed in this

appendix, using the spectral representation of random variables. The theory presented

here is largely based on the work of Tatarski (1961, Chapt. 7) and Ishimaru (1978,

Chapt. 17). The goal of these derivations is to determine the temporal power spectra

of phase fluctuations observed at a point. In Chapt. 8 this is used to describe the

phase-difference power spectrum, and thereby to model the behavior of the white-light

fringe position in Michelson stellar interferometry. This approach has been favored

by several authors (Colavita et al., 1987; Buscher et al., 1992) because it provides a

convenient framework in which to compare experiments and theory.

G.1 Introduction

Since the early 60s there have been two main approaches to the study of the prop-

agation of electromagnetic waves through turbulent media: the classical technique

of weak perturbations, and the modern methods that treat strong perturbations and

multiple scattering.

Lawrence and Strohbehn (1970) state that in the 1960s most of the literature

followed the Russians’ use of the so-called Rytov approximation, a weak perturbation

method that uses the scalar wave equation. A derivation using this technique was

presented by Tatarski (1961) wherein the logarithm of the field is taken before the

perturbation is applied. Fante (1975) points out that the Rytov approximation is

equivalent to an integration over a series of ‘phase screens’ and does not account for

multiple scatter from turbulent eddies. Therefore, over long horizontal paths, greater

than 1 km, it does not adequately describe the propagation of electromagnetic waves.
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Disagreements between the theory and observations were noted by the Russians in

the mid 1960s.

The failure of the classical approach gave incentive to the development of mod-

ern techniques which attempt to overcome the limitations of the Rytov method. Al-

though there does not exist any rigorously derived theory that explains all experimen-

tal data, the range of validity of predictions has been dramatically improved: whereas

the Rytov method is limited to distances of less than about 1 km, the Markov approx-

imation is valid for distances of hundreds or thousands of kilometers in the Earth’s at-

mosphere (Lawrence and Strohbehn, 1970). Tatarskii (1971, Chapt. 5), and Tatarskii

and Zavorotnyi (1980) present this method, which is related to quantum field theory.

Further developments are summarised in the review article by Strohbehn (1978).

Despite the improvements of modern techniques, studies of atmospheric tur-

bulence for astronomy have invariably used the classical approach. Coulman (1985)

followed Tatarski’s use of the Rytov approximation in a discussion of astronomical

seeing. Roddier (1981) used the phase-screen method of Lee and Harp (1969) to re-

view the theory and effects of atmospheric turbulence on astronomical observations.

He argued that the saturation effects in scintillation, which mark the failure of the

weak perturbation method, are only evident for observations at 60 degrees or more

away from the zenith, and that experiments have suggested the phase and angle-of-

arrival statistics have a greater range of validity than the log-amplitude predictions

(Clifford, 1978, p.37). He concluded that although modern techniques are required to

treat horizontal propagation of waves near ground under varying conditions, classical

methods are still suitable for vertical propagation at good astronomical sites.

G.2 Spatial Covariances of Log-Amplitude and Phase

In Tatarski’s derivation (1961, Chapt. 7) he begins by assuming that the atmosphere

will cause small changes to the wave, so that the propagating wave at a point r is

composed of an unperturbed wave U0(r) and a small (complex) phase perturbation

ψ1(r). We have therefore

U(r) = U0(r) exp(ψ1(r)),

where the exponent is separated into real and imaginary parts:

ψ1(r) = χ(r) + jS1(r).

χ(r) represents changes in the logarithm of the amplitude, and S1(r) represents

changes in the phase. The plane wave travels in the positive direction along the

h axis, entering the medium at h = 0. An expression is then derived for the phase of

the field at h = L, as an integration over the changing index of refraction.
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The log-amplitude and phase have covariances

Bχ(r1, r2) = 〈χ(r1)χ(r2)〉 and Bs(r1, r2) = 〈S1(r1)S1(r2)〉, (G.1)

where r1 and r2 are the locations where the field is sampled. A field is said to be

homogeneous if its mean value is constant and if the statistical properties of the field

are independent of where they are measured. We can then shift all vectors by an

amount r2 to obtain

B(r1, r2) = B(r1 − r2, 0).

Furthermore, a field is said to be isotropic if its properties are independent of direction,

ρ = |r1−r2|. In the following derivations it will be assumed that the medium is locally

isotropic, but slowly changing along the h axis.

Now, if κ = 2π/l is a coordinate in spatial wavenumber (proportional to spatial

frequency) and k = 2π/λ is the wavenumber of the electric field then the covariances

can be expressed in terms of the power spectrum of the index of refraction fluctuations,

Φn(h, κ) :

Bχ(L, ρ) = 4π2k2
L∫

0

dh

∞∫

0

κ dκJ0(κρ) sin
2
[
L− h
2k

κ2
]

Φn(h, κ),

Bs(L, ρ) = 4π2k2
L∫

0

dh

∞∫

0

κ dκJ0(κρ) cos
2
[
L− h
2k

κ2
]

Φn(h, κ),

where J0(κρ) is a Bessel function of the first kind of order 0. This general expression

is also derived in a more physical fashion by Lee and Harp (1969, eqs. 13, 14), and is

discussed at some length by Mandics, Lee, and Waterman (1973).

If we were to make the simplifying assumption that the wave propagates in a

homogeneous medium, so that the power spectrum Φn(h, κ) is independent of position

h, then

Φn(h, κ) = Φn(κ)

and the integration over h yields

Bχ,s(L, ρ) = 2π2k2L

∞∫

0

J0(κρ) fχ,s(κ) Φn(κ)κ dκ. (G.2)

where

fχ(κ) = 1− sin(κ2L/k)

κ2L/k
and fs(κ) = 1 +

sin(κ2L/k)

κ2L/k

The f(κ) terms have been called filter functions, because they filter the spectrum

Φn(κ) to arrive at the covariances.
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G.3 Temporal Power Spectra of Log-Amplitude and Phase

The temporal power spectrum of phase fluctuations is found using Taylor’s hypothesis,

that assumes the spatial fluctuations are ‘frozen’ and swept past the observer by a

wind of a given velocity. In the case of a wind with a constant velocity we simply

replace ρ by v⊥τ , where v⊥ is component of the wind speed that is perpendicular to

the path of the propagating wave. We then obtain the covariances

Bχ(L, τ) = 4π2k2
∞∫

0

κ dκJ0(κv⊥τ)

L∫

0

dh sin2
[
L− h
2k

κ2
]

Φn(h, κ),

Bs(L, τ) = 4π2k2
∞∫

0

κ dκJ0(κv⊥τ)

L∫

0

dh cos2
[
L− h
2k

κ2
]

Φn(h, κ).

The temporal frequency spectrum can then be written as the Fourier transform of the

correlation functions.

W (ω) = 2

∞∫

−∞

B(L, τ) cos(ωτ) dτ = 4

∞∫

0

B(L, τ) cos(ωτ) dτ

This transform contains an integral over the Bessel function, the only time-dependent

part of the correlation function:

∞∫

0

cos(ωτ) J0(κv⊥τ) dτ =

{ [
(κv⊥)

2 − ω2
]−1/2

κv⊥ > ω

0 otherwise

The power spectrum of phase fluctuations can therefore be written

Ws(ω) = 16π2k2
∞∫

ω/v⊥

κ dκ

L∫

0

dh cos2
[
L− h
2k

κ2
]

Φn(h, κ)
[

(κv⊥)
2 − ω2

]1/2
.

G.3.1 Temporal power spectra in a homogeneous medium

If the medium is homogeneous then the integration over h is straightforward, and after

a substitution of variables Tatarskii (1971, §52, Eq. 33) writes

W (ω) =
8π2k2L

v⊥

∞∫

0

f(κ) Φn(κ) dκ
′, (G.3)

where fχ(κ) and fρ(κ) are as given before, and

κ =

√

κ′ 2 +

(
ω

v⊥

)2

.

Power spectra derived from this theory have been stated elsewhere: Ishimaru (1978,

Chapt. 19, Eq. 16) uses the Kolmogorov spectrum

Φn(κ) = 0.033C2n κ
−11/3
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to derive the power spectrum of phase fluctuations, where C2n is the phase structure

constant that determines the intensity of the fluctuations. Tatarskii (1971, §52, Eq.
34) used a modified Kolmogorov spectrum

Φn(κ) = 0.033C2n κ
−11/3 exp(−κ2/κ2m), (G.4)

to also derive phase fluctuations. Tatarski’s modified spectrum includes an exponential

taper which represents turbulence with a finite inner scale length determined by κm.

His results are also presented by Lawrence and Strohbehn (1970, Eq. 44). That

equation may be evaluated at asymptotic limits with reference to

Ω =
f

v⊥
(2πλL)1/2,

and the result is

Ws(f) = 3.28 · 10−2C2nk2Lv
5/3
⊥ f−8/3, Ω¿ 1, (G.5)

Ws(f) = 1.64 · 10−2C2nk2Lv
5/3
⊥ f−8/3, ΩÀ 1. (G.6)

G.3.2 Temporal power spectra in a smoothly varying medium

For astronomical applications it is unreasonable to assume that the medium is ho-

mogeneous, since the pathlength of propagation will be many times larger than the

outer scale size of turbulent eddies. Tatarski (1961, Chapt. 8) and Tatarskii (1971,

§48) uses the following substitution for waves that propagate through slowly varying

media. The power spectrum of index of refraction fluctuations is now written

Φn(h, κ) = C2n(h) Φ
0
n(κ).

The spectral density of Φ0n(κ) remains unchanged along the path of propagation h, but

the total power contained in the spectrum varies according to the structure function.

This substitution is also used by Lawrence and Strohbehn in their review (1970). The

covariances of log-amplitude and phase therefore can be written:

Bχ(L, ρ) = 4π2k2
L∫

0

C2n(h) dh

∞∫

0

κ dκJ0(κρ) sin
2
[
L− h
2k

κ2
]

Φ0n(κ),

Bs(L, ρ) = 4π2k2
L∫

0

C2n(h) dh

∞∫

0

κ dκJ0(κρ) cos
2
[
L− h
2k

κ2
]

Φ0n(κ).

The next simplifying assumption is to use the geometrical optics approximation,

κ2L/k ¿ 1, so that the sine squared term becomes an angle squared and the co-

sine term approaches unity.

Bχ(L, ρ) = 4π2k2
L∫

0

C2n(h) dh

∞∫

0

κ dκJ0(κρ)
(L− h)2

4k2
κ4Φ0n(κ),
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Bs(L, ρ) = 4π2k2
L∫

0

C2n(h) dh

∞∫

0

κ dκJ0(κρ) Φ
0
n(κ).

This same approach can be used to write the temporal power spectra.

G.4 Temporal Power Spectra of Everything

If the geometric optics approximation is used, where fs(κ) ' 2, then the equation for

the power spectrum of phase fluctuations is greatly simplified. For fluctuations in a

locally homogeneous medium we have, from Eq. G.3,

Ws(ω) =
16π2k2L

v⊥

∞∫

0

Φn(κ) dκ
′.

The total power spectrum as seen from the ground can then be derived by integrating

Ws(ω) as a function of height through the atmosphere, taking into account changes of

the wind speed and phase structure constant. Colavita uses this framework to describe

various power spectra relevant to astrometric observations (Colavita, 1985; Colavita,

1987). He uses the correlation function of phase to define other correlation functions,

including phase-difference, relative phase-difference, and time-lagged relative phase-

difference, for instances where the wind velocity is parallel or perpendicular to the

interferometer’s baseline. These new correlation functions modify the power spectrum

according to basic Fourier transform relationships, and appear as a multiplicative

factor, g(κ, ω), in the equation.

Ws(ω) = 16π2k2
∞∫

0

dh
1

v⊥

∞∫

0

dκ′Φn(h, κ) g(κ
′, ω).

They can also be thought of as filter functions, in the same sense as was used in

Eq.G.2.

G.5 Summary

The theory of wave propagation through the atmosphere has been described using

the Rytov approximation and the spectral representation of random variables. The

models of index of refraction fluctuations, Φn(κ), have not been described in detail,

but the formulations have been presented so that they may be applied to the study

of the power spectra of phase fluctuations. The theory is described further in Chapt.

8 where phase-difference power spectra are described.
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